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The purpose of this paper is to establish a convergence theorem for a second 
order accurate, linear, three-level difference scheme for a class of quasilinear para- 
bolic differential equations. In the interests of notational simplicity, we shall present 
our result in detail only for the special semilinear partial differential equation 

(la) b(w) - = a(w) I. 
at ax ax/ 

Later, we shall indicate how our convergence theorem can be extended to more 
general equations than (la). 

Let w = w(x, t) be a smooth solution of the differential equation in the rectangu- 
lar region R = {(x, t):0 < x < 1, 0 < t < T} such that 

w(x, O) = (x), O < x <1, 

(lb) w(0, t) = 4J0o(t), 0 < t < T. 

w(l, ) = ,61(t), 0 < t < T. 

where X, 4to and 61, are specified functions. In addition to assuming that the coefficient 
functions b and a are defined and smooth for all real w, we assume that there exist 
positive constants ,4 and X such that 

(2) b(w) _ A > O and a(w) > v > O. 

Because of (2), it follows that the differential equation (la) is uniformly parabolic, 
so that w is the only solution of the boundary value problem (1). 

Before describing the three-level difference scheme for (1), we introduce some 
convenient notation. If N is a positive integer and h > 0 is defined by the relation 
(N + 1)h = 1, then we put X = {sh: s = 0, 1, * * *, N + 1}. If 0 < 2k < T, then 
we let J be the largest positive integer such that kJ < T. We assume that there are 
two positive constants X_ and X+ such that all admissible h and k satisfy 

(3) X-h < k < X+h. 

The standard difference operators D+ , D_ and Do are defined, as follows: 

hD+u(x) = u(x + h) -u(x), 

hD-u(x) = u(x) - u(x - h), 

2hDou(x) = u(x + h) - u(x - h). 

Finally, for any suitably defined function v(x), we put 

a(v(x)) = at [v(x) + v(x - h)]/2}. 
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We determine a sequence uI, Ul, ... , uj of real valued functions defined on the 
(N + 2)-element set X, as follows: For each j we put uj(O) = Jto(jk) and 
uj(1) = i11(jk). Then, on the N-element set X n (o, 1), 
(4a) Uo = X, 

(4b) =l = + b(o) (a(0)0')', 

and, for 1 < j < J, 

(4c) b(uj)(ujui - uj-) = 2kD+(d(uj)Duj), 

where 

(5) u = (uuj+l + uj + uj-l) /3. 

It is clear that the three-level difference equation (4c) determines uj+j uniquely 
as the solution of a linear, numerically stable, tridiagonal system of equations. The 
relations (4a) and (4b) provide the necessary starting values for (4c). Although we 
give no details, it will become obvious that it is permissible to replace (4b) by 

k 
U = + [D+(a(0)D-4)W. b(4) 

For the approximation determined by (5) we have the convergence theorem. 
THEOREM. There is a constant A > 0, independent of h, k and uj such that 

(6) max i uj(x) - w(x, jk) I < A (h2 + k 2) 
xEX;l< j?J 

for all sufficiently small h and k satisfying (3). 
Previously, the weaker error estimate 

N \1/2 

(7) maxh E Iu (sh) - w(sh, jk)2) < A(h2 + k2) 
<j <J s =1 

was proved for certain mild (linear) generalizations of the heat equation [1], [3]. 
Also, in a private communication, James Gunn showed us a derivation of the error 
estimate (7) for equations of the form 

b(x, t) =ad (aXI t70W) dw + cN ( t, w at ax ax / 
His proof, however, assumes, in addition to the usual parabolicity inequalities, that 
Oc/Ow is bounded for (x, t) E R and I w I < + cc and a has continuous second and 
bounded third derivatives in the same region. 

Let us denote by , the real linear space of all real-valued functions u(x) defined 
on the discrete set X for which u(0) = u( 1) = 0. It is obvious that Qh has dimension 
N. The 12-inner product (u, v) and induced norm 11 u = (, v) on Qh are defined 
by 

N 

(u, v) = h E u(sh)v(sh). 
s=1 

The 100-norm 11 u II,, on h is given by 

I u = max I u(sh)/. 
1?s<N 
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The D-inner product (u, V)D and induced D-norm 11 U flD = (U, V)D1/2 on Qh are de- 
fined by 

N+1 

(U, V)D = h E D-u(sh)D.v(sh). 
s=l 

It is well known [2] that the foregoing norms satisfy the inequalities 

(8) fl U || <- | U fl l. 11 U 11D . 

For the solution w of (1) we put wi(x) = w(x, jk). We define on Qh a modified 
D-inner product (U, V)j,D and induced normal U 11jD = (U, V)?D by 

N+1 

(U, V)j,D = h i a(uj(sh))Du(sh)Dv(sh). 

It follows immediately from (2) that 

(9) || U ||jD > |U D 0 < j< J 

Furthermore, if 

A, = sup a| sup I a'(w(x, t))I, 

then from the mean value theorem and (9) we obtain the inequalities 

(10) I (U, V)j,D - (U, V)j_1,D I -< kA1 || U |ID || V |ID , 

( 11 ) || U jijD < (1 + kn1'Al) ll U I-I1,D 

Finally, summation by parts shows that [2] 

(12) (u, D+(a(wj)Dv)) = -(u, V)j,D 

for any u, v E Qhh. 

With the aid of these preliminary results, we proceed to the proof of the con- 
vergence theorem. The usual argument, based on Taylor's formula, shows that the 
solution w of (1) satisfies, in X n (0, 1), the relations: 

(13a) wO = 4, 

(13b) w1 = u1 + ri, 

and, for 1 < j < J. 

(13c) b(wj)(wj+i - wj-) = 2kD+(a(wj)DAwj) + 2krj+l, 

where Cvj is defined as in (5) and the local truncation errors rj are such that 

(14) 11j 11X <?A2(h2+k2), 1 < j<J, 

for a suitable constant A2 . Without loss of generality, we may assume also that 

(15) Wl - U1| fD< A2(h2 + k2). 

Obviously, the error function zj = wj- uj belongs to the space Qh , and it 
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follows from (4), (13) and the mean value theorem that 

(16a) zo = 0, 

(16b) Z = 7, 

and, for 1 < j < J, 

b-(uj) (zj+ -zj-,) = 2kD+(a(wj)D-zj) + 2krj+l 

(16c) + b'(E j)zj(wj+l -wj-) 

+ 2kD+(o-Dfj) - 2kD+(jDz j), 

where 

(17) j(x) = a(wj(x)) - a(uj(x)), x E X - , 

and 

(18) I1iI _ sup Iwj + lzf 
R 

First, we choose h and k so small that 

A2(1 + X?2)k2 ? k ? 1. 

Then, using (3), (8) and (15) we find that 

(19) 11 Z1 1f <_ 11 Z1 IID ? k < 1. 

Now, we prove by induction that I Izj I10 _< k for all sufficiently small h and k 
satisfying (3). It follows from (16a) and (19) that the assertion is true for j = 0 
and j = 1. Assume that fIl z1 ? k for all nonnegative integers 1 _ j, and we shall 
prove that 11 zj+i 110 _< k. 

Putting zj* = zj+l - zj-i , we form the 12-inner product of (16c) with 3zj* to 
obtain 

6 

(20) I1+I2 Z Ir, 
r=3 

where 

I, = 3(zj*, b(uj)zj*), 

12 = -6k(zj*, D+(a (wj)D_z'j)), 

I3 = 6k(zj*, rj+?), 

I4 = 3(zj*, b'( )j)zj{wj+? - wj,} ), 

I5 = 6kI(zj*, D+?(o-fDAj )), 

16 = -6k(zj*, D+(o-D-zj)). 

It follows immediately from (2) that 

(21a) I, ? 3/, 11 Zj* 112. 
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Using (5) and (12) we obtain the relation 

I2 = 2k[|| Zj+1 lli~,D + (Zi+l) Zj)jD - fl Zj-1 f ,D - (Zi; Zj-l) jD, 

If we put 

(22) Lj = 2[|| Zj+1 |ji1,D + (Zj+1, Zj)j,D + || Zj flj,D]7 

then 

12 = kLj - 2k[|| Zj || l,.D + (Zi 7 Zj-1) j,D + || Zj-1 IDI] 

Using (10), (11) and Schwarz's inequality we obtain the estimate 

(21b) I2 > kLj - k(1 + kA3)Lj-, 

where 

A3= 31-jA . 

Using the generalized Cauchy-Schwarz inequality on I3 we find that 

(21c) 1 3 ? < E 1f Zj* 1l2 + 9k25-1 11 
_ + 

for any positive number e. 
Our induction assumption || zj lo < k < 1 and (18) imply that Ij < m + 1, 

where m = SUPR J w ; hence, if 

A4= sup b'(w) sup 
fwI!m+l R at 

then 

I4 1 ? 2kA4 11 Zj* fZi 11 

Therefore, by (8) 

(21d) 1 4 1 _ El Zj* + 112 + 2 -1 
z1 f12 

Since our induction assumption implies that 1 uj wj + II zj < ? m + 1, 
using (17) we can find a constant A5 > 0, depending only on X4, SUPR I OW/1X 

SUPR I O/2Ox 1, and 

sup [1 a'(w) 1, 1 a"(w) 1], 
I wI <m+l 

such that 

fl D+(o-jD-j) 11 _ A511 Zj JID 

hence, for any E > 0, we have the estimate 

(21e) 1h I5 < 'Eli Zj* 112 + 9k2&'A5211 Zj 112 

Finally, if 

A6 =3q-' sup I a'(w) j, 
IwII <?m+l 

then, using summation by parts and Schwarz's inequality, we find that 

(21f) I6 I < k2A6(Lj + L -1). 
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Now, from (20) and (21) we obtain the estimate 

(3u - 3e))1 zj* 112 + k(l - kA6)Lj ? k(1 + kA7)Lj-l 
(22) 

+ 9k25'11 r+'j-l2 + k2A8E111 zf DI 

where 

A7 = A3 + A6 and A8 = A42 + 9A52. 

Choose e = a. Then (22) implies that 

(23) (1 - kA6)Lj ? (1 + kA9)Ljl + 9kiV111 rj+l 112, 

where 

A9 = A7 + V-1iFA7 

We now assume k is so small that 2kA6 < 1. Since 

(1 - kA6)-' < exp (2kA6), 

it follows from (23) that 

(24) L< c eak Lj_ + 9ko-V111 rjIJ 112 

where 

a = 2A6 + A9. 

If 3 = 9p'A2 2T, then (14) and (24) imply that 

L} ? eaT [Lo + (h2 + k 2)2] 

Since Lo = 211 zO 11OD < 2 -'A22(h2 + k2)2, in view of (9) and (15), we obtain 
the inequality 

1Zj 12 <11Z~ 11 2 < 2l j1l2D 7~~ A(2 + 2k), (25) II01 11 11 1 zj~l Zjj~ j)D 4?1Lj < A2(h2 + kc) 

where 

A2 = 8g-lear (A2 
2 + i) 

Thus, we shall have 1i zj+,? j. < k as soon as 

A(l + X-2) k : 1, 

which finishes the induction step (note that our restrictions on the size of h and k 
are independent of uj). 

As a result of (25), we have also established the convergence theorem: 11 zj lo 

A(h2 + k2). 
An examination of the foregoing proof will show that the convergence theorem 

remains valid under the weaker assumption that the conditions in (2) hold only in 
some neighborhood of the solution w. This generalization shows, for example, that 
the convergence theorem holds when the difference scheme (4) is applied to positive 
solutions of 

w1/2 aw/3t= =2w/X2. 
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Finally, we indicate that our results can be extended to equations of the form 

b (x, 1, wI aw a laa (a(x, t, w) W) ?+ C W aw I 
where b ? ,A > 0 and a ? i7 > 0. We put 

a(x, t v(x) ) = a [x - h,7 t, v(x) + v(x h3)- 

Then the difference scheme becomes uo = 0, 

ul = 0 + [k/b(x, 0, q, 5')j[(a(x, 0, 4)>')' + f(x, 0, 4, 4')j, 

and, for 1 < j < J 

b(x, jk, uj, Douj) (u?l - = 2kD+(ct (x, jk, uj)DAj) + 2kf(x, jk, uj, Douj). 

The only major change in the convergence proof is that one proves by induction 
that 11 zj llo < k and 

max I D-zj I < k. 
X-{o} 
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