
Variations on a Theorem of Landau. Part I 

By Daniel Shanks and Larry P. Schmid 

1. Introduction. Recently [1] we discussed Landau's function B(x) which 
equals the number of positive integers ? x that can be expressed as a sum of two 
squares u2 + v2 with u and v nonnegative integers. We showed that 

0.764223654 x F 0.581948659 /I 
(1) B(x) = [1 + + ( . (log x)1/2 log x log2 x 

M'iore generally, for any integer n P - k2, let Bn (x) be the number of positive 
integers <x of the form u2 + nV . Then Bx(x) is our previous B(x), and it was also 
shown in [1] that 

(2) B4(X) = 0.573167740 x + 0.581948659 ( 
0 1 

(log x)1L2 log1 + 0 log2 xj 

For the generalization Bn (x) it is known that 

(3) Bn(Z) f~} (l tl )1bx 
(log X) 1/2 

for some constant b. , but to compute this constant is not always easy. As regards 
the error term in (3) H. H. Ostmann stated, in effect [2], that for n > 0, 

(4) B.(x) - (log X)1/2 
+ 0 

(log 
) 

but this is not always true. For example, it will be seen in the sequel that 

(5) B14(x) = x~b1 K - 
014 +0(1 ] 

)B14(X) =(log )"2 L I 
? (log x)2log x 

for some constant 114 . On the other hand, for many values of n (namely, when there 
is one class/genus, as will be explained later) Eq. (4) can be strengthened to read 

(6) Bn (x) b x F1 +1 + 0(1 (log X)1 12 log x +?log2 x)j 

The erroneous (4) stems from a misinterpretation of the results obtained by 
R. D. James [3] and Gordon Pall [4]. They showed that, for a fixed positive n, the 
total collection of all positive numbers expressible by at least one form, au2 + buy + 
cv2 with b2 - 4ac = -4n, has a population given by 

(7) 
Tn/N 

= In X ( 0 x 
IT ( -Z ) = (log X) 1/2 k?log x/ 

for some tI . If we have class number 1, all such quadratic forms are equivalent 
to u2 + nv2, and (4) follows. But if the class number exceeds unity, (4) does not 
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automatically follow for the population of an individual form, and in (5), as was 
stated, the "error" is really of a higher order. 

We shall not confine ourselves here either to class number 1 or to definite forms 
(n > 0). In the thesis of Paul Bernays [5], which is referred to in [6] and [7], but 
which was not available to us, he showed that for any a, b, and c such that b2 - 4ac = 

- 4D1 #V, the population of the individual form au + buv + CV2 satisfies 

(8) P(X) PD X ( 
(log X)"12 

for some PD . From this, therefore, one not only has (3), but also the further fact 
that all forms with the same determinant D have populations that are asymptotic 
to one another. 

If one knew the constant t,, of (7), and if the several classes were always dis- 
joint, then one could obtain the bk of (3) merely by dividing t" by the class number. 
But the classes are not always disjoint and the constants are generally not known. 
Further, the great variety of second-order terms, as in (5) and (6), has not been 
investigated. We propose to examine these questions here. 

For many values of n, with various class numbers, or various group structures 
with the same class number, and with different types of overlap amongst the 
several classes, we will evaluate the constants bn , indicate the nature of the second- 
order term, tabulate the exact populations Bn (x), and compare the populations of 
the different classes. 

We thought, at first, to have a subtitle: "Studies in Binary Quadratic Forms" 
for we must admit that the variety of situations that presented themselves far 
exceeded our original notions, and required some effort on our part to unravel and 
understand. Later, we considered whether another alteration of the title was called 
for, since the investigation, as it developed, was a stimulating one which threw 
off suggestions in many directions. 

Some of these suggestions (only some!) relate to the generalized Riemann 
Hypothesis, to the exhibition of infinitely many examples having the same 
class number, to a criterion for Mersenne primes, to a problem of Bateman, to 
nonalgebraic singularities that can be dominated by algebraic singularities, to 
trees of prime classes, to the Dirichlet arithmetic progression theorem, and to the 
failure of factorization using idoneal number techniques. We will present some of 
these topics as we proceed, interspersing them within the main framework that is 
called for by the investigation of Bn(x). 

2. Notation. We have defined Bn(x). Similarly, let Bac(x) equal the popula- 
tion of au2 + cv2; we suppress the first subscript if it equals 1. Further, let Ba,b,,(X) 
be the population of au2 + buv + cv2. And in this last case we must allow u or v 

22 to be negative; e.g., 37 = 4U + 4uv + 5V2 for (u, v) = (-1, 3), but 37 is not 
obtained if the arguments are nonnegative. 

Sometimes we are especially interested in the odd (or even) numbers represented 
by these forms, and we then replace B by 0 (or E). Thus 02,3(X) is the number of 
positive odd integers ?x represented by 2u2 + 3v2. In [1] it was shown that if we 
have 01(x), this suffices, and we can easily deduce El(x) and Bi(x). One of our 
tasks here is to determine the extent to which this generalizes for 0n(x). 

We defined b. in (3) and we defined c. in (6) when (6) is valid. 
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We will have much need of the Dirichlet series L.(s) defined by 

(9) nL(s) = gE (2k + 1)) 

and its analytic continuation, where (-n/(2k + 1)) is the Jacobi symbol, cf. 
[8]. The function tn(s) is given by 

(10) (s) = II(1 -e) (S) 

where the product is taken over all primes r that divide 2n, and where c(s) is the 
Riemann zeta function, cf. [9]. This function tn(s) can always be written as an L 
function since it equals L-m2 (s) where m is the product of all distinct odd primes 
dividing n. Whichever notation is more convenient will be used in a particular 
instance. 

The quantities gn are also needed. Here 

(11) {7n = [I (1 - q 
q 

where the q's are all the odd primes that have -n as a quadratic nonresidue: 

(-n/q) = -1. 

If the primes p satisfy 

(-n/p) = +1, 

then 

(12) MS(s) = IA 17(1 - l/p) (I - 1/q8) 
P.29 

while 

(13) Ln(s) = II17(1 - I/pf)(1 + l/q8). 
P'q 

Therefore 

( 14 ) r (Ms) p1 + I/ p II 1- 1/q2 
Ln(S) q 1 - I/qs q (1 - l/,,)2 

or 

HI = (3n(S)1/2 ) I 1 
q 1 - l/qs \Ln(s)j q (1 - I/q2s)1/2 

It follows, by induction, that gn may be evaluated by the very rapidly convergent 
product 

( 15) (n n(2 
)1/4 (?n(4) 1/8 (? 8)) 1/16.. 

provided that the constants L,(2k) are available. The formula in (15) may be 
nested: 

gn = </RM 2)/Ln(2)] -/ [M 4)/Ln(4)] * * * }} 

and for the accuracies aimed at here three terms generally suffice. 
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We also need the generating functions f.(s) (or fac(s), or fa bc(S)) where 

(16) fn(8) = Zakk1 
k=1 

with ak = 1 or 0 according as k is, or is not, representable by u2 + nv2, (or au2 + cv2, 
etc.). For example, cf. [1, p. 81], 

(17) fi(s) = 1 - l /pI 1_ I 1/12 P 1 -l qI - ls 

where the primes p= 1 (mod 4) and the primes q = -1 (mod 4). 
If n corresponds to a large class number, or to many genera, or if it has square 

factors, N2 2 n, or if we have some combination of these, fn(s) may be much more 
complicated. This creates one of our main tasks. 

It will be convenient to introduce an abbreviated notation. Let [P] be given by 

(18) [P]==JJ 1 
1 I 1/ps' 

the product being taken over some class of primes P. Further let [2], say, or [-P], 
or [Q2] be given by 

- 1/28 P I + I/ps q 1- _1/q2s 

respectively. A subscript, such as in [Q]2 , will mean that s = 2. Thus (11) and (17) 
may be written 

(19) gn (Q=2) 

and 

(20) fi(s) = [2][P][Q2]. 

In what follows, whenever we are discussing Bn (x), by P we mean the class of 
primes p that have -n as a quadratic residue, while Q is the class of primes q that 
have -n as a quadratic nonresidue: 

(-n/p) = +1 (-n/q) = -1. 

3. Class Number 1. We start with the easier cases. For n = 1, a number m 
2 

can be expressed as m = u + v2 if and only if in its factorization into primes, 
namely 

m = 2aM p it 1I qf 2l 

we find an arbitrary power of2, xa > 0, arbitrary powers of any number of primes 
pi-1 (mod 4) and arbitrary even powers of any number of primes qi =-1 (mod 4). 
Our abbreviated expression for the generator fi(s), in (20), indicates this sym- 
bolically. 

Suppose for some n every p in P can be expressed as u2 + nV2; that is, assume that 

(-n/p) = 1 implies p = u2 + nv2. 
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Then we also have class number 1, as in the case n = 1. This occurs for n = 7, 4, 3, 
2, 1, -2, -5, -13, -17, -29, -41, -53, -61, -73, -89, -97 and some larger 
negative primes. In our choice of examples, however, we will largely confine our- 
selves, here and later, to the 200 values of n # - k2 that satisfy ? n I < 105. 
Naturally, we will not examine in detail even all of these; in fact, some of them are 
quite complicated. 

The 16 class number 1 cases mentioned above have four different types of 
behavior. 

(a) n = -2, 1, 2. 
Here u2 + nv not only represents every prime p in P but also represents the 

prime 2. 
(b) n = -61, -53, -29, -13, -5, 3. 
Here n can be certain positive or negative primes-- 3 (mod 8). For some 

other such primes, e.g., n = -101, -37, +11, +19, etc. the class number is 3 or 
larger. Some of those cases are examined later. In this case (b) 2' is represented by 
u2 + nv2 if and only if a is even. In other words, the prime 2 acts like a prime q 
here in distinction to its behavior in case (a) where it acts like a prime p. But the 
remaining prime I n I is again representable, and thus behaves like a p. 

(c) n = -97, -89, -73, -41, -17, 7. 
Here n can be certain positive or negative primes =_ 7 (mod 8), but again not 

every such prime since -257, +23, +31, etc. have class number 3 or larger. 
This time 2 = u2 + nv2 if and only if a > 2. While 2 is not representable, 8 is. 
Specifically: 

8 = 12 + 7.12 = 52 _ 17.12 = 72 - 41.12 = 92 - 73. 12 

2 _ 2 2 
. - 217 -89.23 = 69 -97.72 

The above assertion follows since 4 is obviously representable as 4 = 22 + n . 02, 

and all higher powers of 2 can be written as 4k or 8. 4k. Again, I n I is representable. 
(d) n = 4. 
Here, as in (c), 2' is representable if and only if a > 2, but the main difference 

here is that n is now divisible by a square > 1. These cases will be treated separately 
as we proceed. 

It follows that the generating functions in these four cases are given by the 
following four formulas. 

(a) fn(s) = [2][p][Q2], 

(22) (b) fn(s) = [4][In I][P][Q2], 

(c) fn(s) = (1 - 1/2S + 1/4S)[2][I n I][P][Q2], 

(d) f4(s) = (1 - 1/2S + 1/4s)[2][P][Q2]. 

Now, for any n, we have 

(23) Pn(s)L.(s) = [P]2[Q2] 

from (12) and (13). Therefore, the common factor [p][Q2] in (22) may be written 

[p][Q2] = (D.(s)L.(s) )1 2( [Q2] )1/2 
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and using (10) we have 

(24) [P][Q2] = J (1 - 
r12n 

Since c(s) has the principal part: 1/(s - 1), at s = 1, and the remaining factors 
in (24) and (22) are analytic at s = 1, any one of the generating functions in 
(22) may be expanded as follows. 

(25) f,(s) = D./(s - 1)1/2[1 + alc,(s - 1) + a2,,n(S - 1)2 + 

where the constant Dn has the common factor 

11(1 - 

12 1/ 
H 1 - r) (Ln (l) On 

rI2n 

from (24) and (11), and this is to be multiplied by 

22 |n|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/(I nI - 1), |n|/(I n -I 1 or 2 
depending on whether we have case (a), (b), (c), or (d), respectively. 

Alternatively, we may use Euler's 4 function and may verify that 

(26) Dn = &n[Ln(l) * 21 n 1/0(21 n 1)]1/2 n 

where n is given by 
n= 12 or 3 

respectively. 
From the generator (25) the analysis of Bn (x) in these cases proceeds almost 

exactly as in Landau's original paper on B1(x) (see [10], or cf. [1]), the main dif- 
ference being that the L(s) = Li(s) there is now replaced by Ln(s). One, therefore, 
also obtains equation (6) in these cases, but with the coefficient now given by 

(27) bn = Dn/'(4) = bngn[Ln(1) .21 n 1/X+(21 n j)]1/2 

The constants cn in (6) are more difficult to compute; we will not calculate them 
here, but for n > 0 a computation analogous to that for cl in [1] is possible since 
LI(1)/Ln(1) can be evaluated in terms of gamma functions when n is positive. 

4. Calculation of by. First Digression. Since Ln(1) is expressible in closed 
form, cf. [8], the only problem in evaluating bn from (27) is that of computing the 
quantity On. The product in (11) converges very poorly, and if one must depend 
upon this an accurate value of b. is not obtainable. We will see later that this is the 
case for some interesting examples: n = 11, 14, 21, etc. But if the numbers Ln(2k) 
are available, say, for k = 1, 2, 3, the very rapidly convergent (15) may be used. 

Now, for any n < 0, L. (2m) is available in closed form (at least in principle) 
for all even integers 2m, [8]. For any negative n, therefore, (15) enables us to compute 
gOn accurately. For some positive values of n, including 1 ? n < 10, the Ln(2m) 
have been computed numerically, [8], [11], and (15) again may be used. It follows 
that in all our 16 class number 1 cases, we could compute bn accurately from (27) 
and (15), although for the larger values of n, such as -97 and - 89, the computa- 
tion would be tedious. We include within a larger Table 1 accurate values of b4 
for n= -17, -5, -2, 1 2, 3, 4, and 7 selected from the 16 cases presently under 
consideration. 
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TABLE 1 

Constants 

b-34 = 0.0505360417 b2 = 0.872887558 b12= 0.399318378 
b-1 7 = 0.484644756 b3 = 0.638909405 b13 0. 420 (6) 
b-10 = 0.488162034 N = 0.573167740 b14 0.563 (5) 
b- = 0.344664285 b= = 0.535179999 b16 -=- 0.334347848 
b_ 7 = 0.455065213 b6 = 0.558357114 b20 = 0.401384999 
b-6 0.482889041 b7 = 0.543539641 b24 0.279178557 
b = 0.515939482 b8 = 0.436443779 27= 0.496929538 
b3 - 0.441875842 b = 0.424568696 b64 - 0.274642876 
b-2 = 0.689328571 b10 = 0.473558100 b=6 0.209383918 
b = 0.764223654 b1 1 0.677 (4) b256 = 0.259716632 

We illustrate the foregoing discussion by a computation of b17, a number that, 
we will need later anyway. We have, from (27), 

b-7= g-17(34L-17(1)/161r) 12. 

Here we want the closed formula [8]: 

L-(1) = 17-1/2 log (4 + 171/2) = 17-12 log[8 + 8+ 8+ ] 

- 0.5080424169. 

To compute gn for negative n in the manner indicated above we note that, for 
negative n, in(2k) and Ln (2k) can be expressed [8] as: 

(28) P (2k) - rnkTr2k, Ln(2k) = Sn kX2k/(-n)l12 

for computable rational numbers r.,k and Sn,k . Thus, in our case, we obtain 

P-17(2) 6 P-17(4) 174 ~ -17(8) 123529038 
L-17(2) \/17 ' L-17(4) 41\/17' L_17(8) 29950897 V17' 

and therefore, from the rapidly convergent product (15), we find 

q-17 = 1.102320127. 

Finally we compute 

b-17= 0.484644756. 

We digress here to note that the Eqs. (28) can be used to give a simple, attrac- 
tive proof of a known 

THEOREM. If a > 0 and X k2 then a is a quadratic residue for infinitely many 
primes and a quadratic nonresidue for infinitely many. 

Proof. For such an a, from (12), (13), and (28), we have 

P-a(2) - rI q + 1 kaa 
L-a(2) ?q q2-1= a" 

and 

~-a(2)L-_(2) p2 + 1 _ 1/2 

?-a(4) pI p2 _ 1 
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for rational numbers ka and la ? with the products taken over all primes q and p 
such that (a I q) =-1 and (a p) = -+1. If the theorem is assumed false we obtain 
a contradiction, since for these values of a, a 12 is irrational. 

Returning to be, we also note that it is easier to compute a rough value of bn 
for n > 0 than for n < 0, but much more difficult to compute an accurate value 
when n > 0. This is because the L.(1) are simpler if n > 0, e.g., L7(1) =7r/2V7, 
and, for all n, gn is larger than, but close to, unity. Thus b7 is bounded below by the 
simply computed (252)14/8 = 0.498. On the other hand, for n > 0 the Ln(2k) 
are not available in closed form, and therefore gan is much harder to compute ac- 
curately. 

We might note that while James [31 and Pall [4] confined themselves to definite 
forms, in this matter of the accurate computation of the bn , the indefinite forms are 
easier. Further, as already stressed by Gauss [15], when n < 0 we encounter many 
more examples of small class number, and of small number of classes/genus, both 
of which conditions greatly simplify the theory. We already noted above more class 
number 1 cases with n < 0, and for other relatively simple cases this predominance 
becomes even greater. 

5. Calculation of Bn. Some Complications. The exact values of Bn(x) given 
in the tables here were obtained by the second-named author with an IBM 7090. 
For the values of n examined the average program ran 10 minutes. 

In the efficient computation of Bi(x) discussed in [1, p. 81] we merely counted 
the population of the odd numbers, 01(x), and deduced the values of El(x) and 
Bi(x) by the simple recurrence relations: 

El(x) = El(x/2) + O(x/2), 
(29) 

Bi(x) = El(x) + O1(x). 

Since these odd numbers are given by m2 + 4M2, where m goes through the odd 
integers and M goes through all integers, one successively adds 1 + 8 + 16 + 
24 + ? to a fixed 4M2 and records, by a mark, all such sums. It develops, there- 
fore, that the program consists almost exclusively of counting and "logical" opera- 
tions. 

The generalization of that program used here for B.(x) computed Am2 + BM2 
for fixed integers A and B and for m odd, as before. For B2(x) everything proceeds 
as before by computing ma2 + 2M2. But for B3(x) two modifications are necessary. 

Firstly, there are two types of odd numbers of the form u2 + 3v2, those with v odd, 
and those with v even: 

3m2 + 4M2 and m2 + 12M2. 

As may be seen, these two sets are disjoint so that we have 

03(X) = 03,4(X) + 012(X). 

One therefore computes the two counts on the right separately, and then merely 
adds. A similar problem arises for any B,(x) with odd n, but while a similar solution 
is available for, say, n = 7, with 

07(X) = 07,4(X) + 028(X), 
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for n = 5 this device fails, since 

5Mi2 + 412 and M2 + 20M2 

are not disjoint, and have instead a complicated intersection. This mysterious inter- 
section becomes clarified only after we have analyzed the cyclic class number 4 cases. 
Similarly, while one immediately observes that the counts 03,4(X) and O12(x) are 
nearly equal, this only becomes understandable after we study class number 2. 
The desire to attain greater computing efficiency here, by counting only the odd 
numbers, therefore forces us to examine these interesting phenomena. 

A second modification needed in computing some Bn (x) in this way stems from 
the fact (page 555) that factors of 2' may occur according to different laws, and 
consequently that the recurrence in (29) may need to be altered. For n = 3, or 
generally for type (b) of page 555, one must replace the first line of (29) by 

(29a) E (x) = En(x/4) + On (x/4), 

while for n = 4, or generally for types (c) or (d), one uses 

(29b) E,(x) = En(x/2) + Ow(x/4). 

Still another type of recurrence is needed for certain class number 2 cases such 
as n = 6, but we postpone that until later. 

A third complication in computing Bn(x) occurs for all negative n. Writing 
n = - N temporarily we consider the indefinite form: 

(30) u 2- Nv2 = in. 

Our previous procedure, of determining (in effect) all solutions of u2 + nv2 = in for 
all (positive, odd) values of in ? x is no longer feasible. For now if in has any solu- 
tion (u, v) in (30), it has infinitely many solutions. The algorithm may be kept finite, 
however, by the use of Theorem 108 in Nagell [12]: 

If u + vN'12 is a fundamental solution of (30) and x + yN'12 is the fundamental 
solution of 

(31) x-Ny2 = 1, 

then 
0 ? v ? mi1n2 y/(2(x + 1))112, 

(32) 0 < l u I < [(x + 1)m/2]112. 

For any m it follows that we can restrict the variable v to those satisfying 

V2 < mny2/2(x + 1), 

and, for any fixed v, we can insist upon 

(33) u _ v(x + l)/y. 

For example, since the fundamental solutions of (31) for N = 2 and N = 34 are 
3 + 2V/2 and 35 + 6V/34 respectively, we can confine ourselves to v2 < m/2, to- 
gether with 

u _ 2v and u > 6v 
in these two cases. 
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TABLE 2 
Populations, Class No. 1 

x Bi(x) B2(x) B3(x) B4(x) B12(X) 

20 1 1 1 1 1 
21 2 2 1 1 2 
22 3 4 3 2 3 
23 5 6 4 4 5 
24 9 10 8 7 8 
25 16 18 14 12 15 
26 29 33 25 22 26 
27 54 60 45 41 48 
28 97 111 82 72 87 
29 180 205 151 137 161 
210 337 385 282 254 299 
211 633 725 531 476 563 
212 1197 1374 1003 901 1066 
213 2280 2610 1907 1716 2030 
214 4357 4993 3645 3274 3885 
215 8363 9578 6993 6286 7464 
216 16096 18426 13456 12090 14384 
217 31064 35568 25978 23331 27779 
218 60108 68806 50248 45140 53782 
219 116555 133411 97446 87511 104359 
220 226419 259145 189291 169972 202838 
221 440616 504222 368338 330752 394860 
222 858696 982538 717804 644499 769777 
223 1675603 1917190 1400699 1257523 1502603 
224 3273643 3745385 2736534 2456736 2936519 
I25 6402706 7324822 5352182 4804666 5744932 

'p26 12534812 10478044 9405749 

We note, then, that the fundamental solution of (31) is needed not only in 
evaluating the number Ln(l ) (which is used in computing the constant b-") but it 
is also needed here in computing B-n(x). 

6. First Table of Bn(x). Comparisons. In Table 2 we list values of Bn(x) for 
five class number 1 cases, and for arguments x = 2k up to x = 225 = 33554432 or 
x = 226 = 67108864. An interested reader can easily recover the corresponding 
values of On(x) and En(x), if he wishes, by use of the recurrences (29, 29a, 29b). 

From (6) we have 

Bn,(x) ba. C n -c 0 i 1 0 (34) B 
=(x - 1 + + 0 ~ 

Bi(x) b01 log x \log2 x/J 

One finds from Tables 1 and 2 that B2(x)/Bi(x) approaches b2/b, from above, 
while B-2(x)/B1(x) approaches bL2/b1 from below. This implies that 

c2> cl = 0.581948659> c-2 

but we have not computed C?2 to verify this. B3(x) remains so closely proportional 
to Bl(x) that it is not clear from this data whether C3 > c1 or C3 < cl . It would be 
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unlikely that they are exactly equal. But C4 = cl, as is known [1, Theorem 2]. In 
fact, we have the theoretical relation 

B4(X) 3 + 1/4 + 1.46457444 ( 1 \] 
= 1+ + + 0 \ 

Bi(X) 4L (log2 X)2 (log2 X)3 \(1og2 X)/J 

The column B4(X) in Table 2 is actually redundant there since one has 

B4(X) = BI(x) - Bi(x/2) + B1(x/4). 

We note, in passing, that of all binary forms u2 + nv2, u2 + 2v2 is the most 
populous, since b2 is the largest of these constants. Similarly, it is of interest that 
u2 + v2 + 2w2 appears to be the most populous of all ternary forms u2 + v2 + nw2. 
However, there is no exact correlation here since u2 + v2 + nw2 represents 20/24, 
22/24, 21/24, 17/24, 20/24, or 21/24 of all numbers when n equals 1 to 6, re- 
spectively, and this is not quite in the same order as the magnitudes of b . The 
theory appears to be incomplete; e.g., for n = 10 the fraction is unknown [13]. 

7. Class Number 2 and the Generalized Riemann Hypothesis. There are -64 
class number 2 cases in the range - 105 < n < 105. All of these are characterized by 
the fact that the primes p in P fall into two (equinumerous) classes, those in a class 
Po that are representable by the form Fo: u2 + nv2, and those in a second class P1 not 
representable by Fo, but which are representable by another form F1: au2 
+ buy + cv2 with b2 - 4ac -4n. Consider first the 32 cases where ?n is a prime, 
7r, or twice a prime, 2r. The behavior here is analogous to the class number 1 type 
(a) in Section 3, but already there are more variations. We may have different 
formulas for F1 and differing ways of representing the prime divisors of 2n. If such 
a prime divisor is representable by Fo we say it is in P0', while if it is representable by 
F1 we say it is in Pi'. One, and only one, of these representations is possible. In 
Tables 3 and 4 we show the variations that occur. Thus, for n = 5, 5 is representable 
by u2 + 5v2 (obviously), and 2 is representable by 2u2 + 2uv + 3V2 (also obviously). 

For all class number 2 cases let the two classes of all positive numbers represent- 
able by Fo and F1 be 4b and 4b. Under composition these two classes satisfy the 
group multiplication of the group of order two: 

(b Aj = (bk 
with 

k=i + j (mod 2). 

TABLE 3 
Variations, Class No. 2 

Type Values of n 

a, 5, 13, 37 
a2 -86, -38, -22, -6 
a3 -83, -67, -59, -43, -19, -11, -3 
a4 6, 10, 22, 58 
a5 -74, -58, -26, -10 
a6 -103, -71, -47, -31, -23, -7 
a7 -94, -62, -46, -14 
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TABLE 4 
Behavior in the Different Types 

Type Form Fo F, Po/ pit of n 

al 7r iU2 + irV2 2U2 + 2uv + ( + )v2 r 2 

'a2 -2w U2 - 2rV2 2ru2 - v2 r 2 
a3 _r i2 - w2 iru2 2 - V_ 2, 7r 
a4 2wr i2 + 2wV2 2U2 + irv2 2, 7r 
a5 -27rw 2 -2V2 2U2 - rv2 2, ir 

a6 - U-7 2 -rV2 i2 - v2 2 r 
a7 -2r U2- 2rV2 2ru2 - v2 2 7r 

It follows that a positive number prime to 2n is in (o or (D, according as the total 
number of its prime factors which are contained in P, (counting multiplicity) is even 
or odd. Therefore the subsets of the numbers in (o and (i prime to 2n have generat- 
ing functions: 

25 P0][Q ] { [P1] +I [-P1] }, 

1[Po][Q ]{ [P1] - [-P1]} 

for (Do and 1i respectively. The generating functions for all members of these sets are 
obtained from (35) simply by including factors for those primes in Po' or P1' along- 
side the corresponding factors [PO] or [P1]. Thus, for n = 5, type ai, we have the 
generators 

2 [Po][5][Q2]{ [2][P1] ? [- 2][-P1]} 

where we take the + sign for fe(s) and the - sign for f2,2,3(s). Similarly, for n = 6, 
type a4, we have 

(36) 2[Po][Q2]{ [2][3][P1] ? [-2][-3][-FP1l 

for f6(s) andf2,3(s) respectively. 
In all these generators the function [P] = [Po][PF] has the same type of singu- 

larity at s = 1 as we discussed for class number 1 and, in fact, (24) remains valid. 
But the function 

p PE 1 - i/P8 pEPi 1 + 1/p" 

on the contrary, is analytic at s = 1 owing to the fact, proven by Landau [14], that 
the classes PO and P1 are equinumerous. For example, for n = 6, the primes in Po 
are those where the characters (2/p) and (-3/p) are both +1, while those in PF 
have both characters equal to -1. From this we find that 

L-2(s)L3(S) = [Po]2[-p1]2[Q2]. 

Therefore the [po][- Fp][Q2] in the second term of (36) is given by 

(L-2(s)L3(s) [Q2])11/2, 
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TABLE 5 
Populations, Class No. 2 

x B6(x) B2,3(X) BIo(x) B2,5(x) 

20 1 0 1 0 
21 1 1 1 1 
22 2 2 2 1 
23 4 4 2 4 
24 8 7 7 5 
25 13 14 10 11 
26 24 23 20 20 
27 42 42 36 36 
28 76 76 65 65 
29 140 139 118 119 
210 257 258 221 218 
211 483 482 409 412 
212 907 907 776 770 
213 1717 1717 1463 1466 
214 3272 3269 2788 2784 
215 6261 6257 5328 5322 
216 12027 12020 10222 10226 
217 23172 23171 19714 19691 
218 44769 44762 38054 38048 
219 86708 86683 73685 73665 
220 168245 168233 142944 142927 
221 327073 327053 277838 277822 
222 636849 636837 540889 540851 
223 1241720 1241723 1054535 1054502 
224 2424290 2424228 2058537 2058507 
225 4738450 4738426 4023278 4023164 

which is analytic at s = 1, and remains analytic for the real part of s > 2 provided 
that the extended Riemann Hypothesis is true. 

In any case, from the known zero-free regions of the L functions, the contribu- 
tion of this second term in (36) cannot modify the counts B6(x) and B2,3(x) by 
more than o(x log-m x) for any m. If LU2(s) and L3(s) satisfy the Riemann Hy- 
pothesis then this contribution is o(xl/2+? ) for any positive e. 

It follows in this case, and similarly in all 32 cases in Table 3, that (6) is again 
valid and that the formula for bn in (27), with &in = 1, must be altered only by the 
factor 2 in (35): 

(37) bn = 2g9[Ln(1) * 2 | n 1/7r,(2 I n 1)]1/2. 

We included in Table 1 values of bn so computed for n =-10, -7, -6, -3, 5, 6, 10, 
and 13, but the last of these is rather crude since the constants L13(2k) were not 
available. This difficulty, which was mentioned before, would also exist for n = 22, 
37, and 58. (This problem is accentuated here since in these three cases gn tends to 
differ from 1 by more than is usual. This is related to the fact that there are es- 
pecially many primes of the form m2 + a for a = 22, 37, 58 [9, p. 326]. Specifically, 
913 r 1.085 and 9a for the other values of a mentioned would be even larger. Where- 
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as, on the contrary, if m2 + a has relatively few primes, such as for a = 11, 14, we 
have values particularly close to 1. Thus, gil ~ 1.019 and 914 1 1.009.) 

For n = -14, and generally for any n of types a7 and a6 in Table 3, one could 
compute Bn (x) from On(x) as in (29). This is so since 2 is in Po' and En(Z) = 
Bn(x/2) as before. But for n = 6, say, one has the more intricate recurrences: 

(38) E6(x) = B2,3(x/2), E2,3(x) = B6(x/2). 

To compute B6(x), therefore, 06(x) does not suffice. One must also investigate the 
second class, and compute 02,3(x) too, whether one wishes to, or not. (The cross- 
computation of B6(x) and B2,3(x) from columns of data 06(x) and 02,3(x) is an 
operation a little like lacing shoes.) 

We include in Table 5 values of B6(x), B2,3(x), Bio(x), and B2,5(X) . One notes at 
once that the two classes are closely equinumerous for both n = 6 and n = 10. 
Algorithmicly speaking, the recurrence computation just described tends to bring 
this about, for if B6(x) > B2,3(x), say, then E6(2x) < E2,3(2x), and that tends to 
compensate for the previous excess. 

The interesting investigation suggests itself to attempt to prove that all comn- 
plex zeros of L-2(s) and L3(s) are of the form ad + iti, with ai < 0 < 1 for some 6 
and all ti < T, by utilizing the difference B6(x) - B2,3(x) for all x < X. If this were 
successful, there would be a distinct gain, for the computation of this latter differ- 
ence is very simple, while the direct investigation of the L functions requires elabo- 
rate transcendental calculations. 

Before leaving this section we note that Bn(x) (log X)112/ bn converges to 1 some- 
what more slowly for n = 6 and 10 than for n = 1. The data implies that c6 (c10) is 
about 34% (37% ) larger than c1 . 

Of perhaps greater interest is the following observation. If p is prime, it is well 
known that the period p of the regular continued fraction for p1/2 is odd or even ac- 
cording as p 1 or p -1 (mod 4). Further, the pth convergent, Pp/Qp, in the 
first case satisfies 

(39) p ~~~~2 _ PQ 2 

But Table 4 calls attention to the less known result that if p = 3 (mod 8) as in type 
a3, then p = 4k + 2 and 

(40) P2 = -2, 

while if p 7 (mod 8) as in type a6, then p = 4k and 

(41) P2k pQ2k = +2. 

8. Class Number 2 Continued, Other Square-Free n. Analogous to types (b) 
and (c) in Section 3 are 9 other cases of class number 2. These are summarized in 
Table 6. We spare the reader the details here. Suffice it to say that (6) is again valid, 
the two classes are again disjoint, and bn is again computed by (27) with the ad- 
ditional factor of 2. We have computed no examples here. 
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TABLE 6 
Other Variations, Class No. 2 

Type n I Fo 
F-__ ___ ___ 

bi -93 U2-93v2 93U2- V2 31 3 
bi -77 u2- 77V2 77U2 - V2 11 7 
bi -69 u2-69v2 69U2 - V2 3 23 
bi -21 U2 - 21v2 21U2 - V2 7 3 
b2 -85 U- - 85v2 5u2 - 17v2 5, 17 
C1 -57 u2- 57v2 57u2 - V2 19 8, 3 
C1 -33 u2 - 33v2 33U2 - V2 3 8, 11 
C2 -65 U2 - 65v2 5U2 - 13V2 8, 5, 13 
C3 : +15 U2+ 15v2 3U2+ 5V2 8, 3, 5 

9. Class Number 2 with n = 4no; Splitting, Nonsplitting, and Overlapping 
Classes. Eight of the fourteen cases here derive from class number 1 cases u2 + n0v2, 
namely: n = -8, 8, - 52, - 20, 12, - 68, 28, and 16, where the corresponding no 
cases have been discussed in Section 3. Five others derive from class number 2 cases 
in Table 3, namely: n = -76, -44, - 12, -92, and -28. The interesting remaining 
case, n = -32, we will return to in the sequel. 

We have already (inadvertently) come across the case n = 12. The form u2 + 3v2 
represents 3 and primes of the form 6k + 1. If v is even the prime is of the form 
12k + 1 while if v is odd the prime is either of the form 12k + 7 or the single prime 
3. If we confine ourselves to odd numbers, the two forms, u2 + 12v2 and 3U2 + 4v2 
behave precisely as in our previous class number 2 cases, including the facts that 
03,4(X) - 012(X) (as already noted on page 559), that the two classes are disjoint, 
that a formula such as (6) is again valid, as is also the relation 

(42) 03,4(X) - 012(X) = o ((X)) for any m. 

The even numbers represented by u2 + 12V2 and 3U2 + 4V2, on the contrary, are 
identical, since in either case u must be even. Therefore, such a number equals 
4(r2 + 3S2) for arbitrary r and s, and we have the equation 

(43) E12(x) = E34(X) = B3(x/4) = E3(x). 

Since 03(X)- 3E3(x), it easily follows that 

b12? 
1 + 

C12 
?ol~ 

(44) B12(x) B3,4(X) = 
(log ) L1 + logx + ? og2 x 

where b12 = 5b3 as in Table 1. 
Three other important cases here are n = +8 and 16. These behave rather 

similarly to n = 12 except for the somewhat different behavior of the even numbers 
represented. This difference reflects the related difference concerning factors of 2 in 
the cases no = 3, +2, and 4. 

Specifically, for no = ?2, 4, we find that the primes u2 + nOV2 split in two classes 
depending upon whether v is even or odd. Thus, we find that these primes, and also 
all odd numbers, fall into the following arithmetic progressions: 



566 DANIEL SHANKS AND LARRY P. SCHMID 

v no = 4 no=2 no- -2 

even 8k + 1 8k + 1 8k + 1 
odd 8k +-5 8k + 3 8k + 7 

Hence, the odd numbers given by the two forms 

u2 + 4nov2, (2u + V)2 + nov2 

again are disjoint, equinumerous, and have the same asymptotic behavior. We have 
written the second form here in such a way as to make it clear that if no is even and 
(2u + v)2 + nov2 is odd, then 2u + v and v are also odd. In particular, for no = 4, 
we have 

(45) 016(X) -04,4,5(X) '- 204(X). 

Again, as before, the two forms represent identical even numbers, and we have 

(46) E4no,(x) = BnQ,(x/4) 

in all these cases. But, for no = ?2, iu2 + 4nov2 now represents only one-half of the 
2 2~~~~~ evens represented by it2 + nov2, while, for nlo = 4, one may verify that it + 16v2 

represents three-quarters of the even numbers of the form u2 + 4v2. Specifically, the 
evens of the form u2 + 16V2 comprise products of any odd number u2 + v2times4, 16, 
32, 64, 128, or any higher power of 2. It is clear, in fact, that in the even numbers 
u2 + 4V2 we lose the even factor 2', in U2 + 16V2 we further lose 23, in U2 + 64v2 we 
further lose 25, etc. 

In the cases n = ?8), 16 we therefore again find (6) valid with the relations 

(47) 
b?8= 'b+2 b16= =7 bi 

as in Table 1. (The interested reader can also compute c16.) 
In Table 7 we have included data for B12(x) and B16(x) together with their re- 

lated forms. We again record the redundancies: 

(48) B12(x) + B3,4(x) = B3(x) + B3(x/4) 

and the more complicated 

(49) B16(x) + B4,4 s(z) = Bi(x) - B, ? + 2B, ()- 2B, (8) + 2B, 

We also note that in Table 7, as in Table 5, the principal form 

U2 + nv2 

usually, but not always, leads its related form in population. This phenomenon is 
clearly somewhat similar to the Chebyshev phenomena, cf. [16], but we have not 
attempted to analyze it, even heuristically. 

In contrast to the examples just discussed, consider n = -12. Here no = -3 
and we already have class number 2. We now find that the odd numbers of the 
form u2 - 12V2 include all of those of the form u2 - 3v2; there is no splitting. For v 
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TABLE 7 
Populations, Other Class No. 2 

X B12(X) B3,4(X) B16(X) B4,4,5(x) 

20 1 0 1 0 
21 1 0 1 0 
22 2 2 2 1 
23 2 3 2 2 
24 6 5 4 4 
25 9 9 8 7 
26 17 16 13 14 
27 30 29 25 24 
28 54 53 44 43 
29 98 98 83 82 
210 183 181 152 149 
211 341 341 286 284 
212 645 640 538 534 
213 1220 1218 1020 1015 
214 2327 2321 1942 1937 
215 4451 4449 3725 3713 
216 8555 8546 7145 7136 
217 16489 16482 13781 13759 
218 31859 31845 26627 26597 
219 61717 61707 51572 51537 
220 119779 119760 100099 100045 
221 232919 232865 194633 194586 
222 453584 453511 379037 378987 
223 884544 884493 739250 739161 
224 1727213 1727125 1443573 1443465 
225 3376505 3376376 2822186 2821923 
226 6607371 6607207 5522889 5522689 

even in m = -2 3v2, it is clear that in is represented. But for v odd, and therefore u 
even, we may utilize 

m = _ 3V2 = (2u + 3v)2 - 3(u + 2v)2. 

On the right u + 2v is now even, so that m is still represented. For example: 
2 2 2 2 2 2 13 = 4 3.12= 112_ 3.6 = 11 12-32. 

Therefore 

O-12(X) = 03(X) 

and n = -12 still belongs to class number 2. As before we have 

E-12(x) = B-3(x/4). 

Whereas Gauss and his contemporaries studied quadratic forms for all n, there 
is some modern tendency to confine oneself to square-free n. We must note here, 
however, that we often find those n which are divisible by squares to be of special 
interest. Thus, we have seen, for the first time in this section, the phenomena of 
splitting, nonsplitting and overlapping classes. Further, as we shall see, while some 
class number 3, 4, or 8 cases, which are of much interest, are difficult to compute 
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when they first occur at n = 11, 14, 21, 41, and 56, one can study essentially similar 
behavior for n = 27, 20, 24, 256, and 96, respectively, and now the computation 
goes through much more easily since the corresponding Dirichlet series L. (s) are 
known. 

10. Class Number 2 Concluded. For brevity, and to allow us to proceed more 
quickly to essentially new phenomena, we forego a complete treatment of the previous 
cases. An interested reader can easily fill the gaps. For example, the fact that class 
number 2 cases no = -23, -19, -11, and -7 remain class number 2 for n = 4n0, 
just as it did for no = -3, follows from the fact that if 

2 2 2 2 u - nov = odd, x -noy = 1, 

with v odd and u even, then 

(50) u2- nov2 = (xu + noyv)2 - no(yu + xv)2, 

and now yu + xv is even since the fundamental solutions x + y\/no are given by 
24 + 5V\/23, 170 + 39V/19, 10 + 3V11, and 8 + 3V/7, respectively. Similarly, the 
remaining nine cases of class number 2 in our range, namely those where n is 
divisible by an odd square: n = 9, 18, - 18, -27, -45, -54, 25, -50, and 98, we 
also bypass. The reader will have no difficulty in verifying, for example, that 
b9 = 5b,/9 as in Table 1. 

Since our paper is a long one, and its publication has been unduly delayed (the 
work was mostly done several years ago), we now declare an intermission. In the 
sequel we shall continue with the more intricate class number 4, 8, and 3 phe- 
nomena, and with discussion of some of the topics mentioned at the end of Section 1. 
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