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(3) f(x) = f(p) + fi(p) (xi -p) + fii(pi + sh, P2 X * p.) (Xi - pl)2 /2. 

Here h = xl- p, 0 < s < 1. 

(4) T(x) = f(p) + Ti(p)(xi - p'). 

-Since f (x) _ T (x), we find that 

(5) fd(p) - Ti(p) + fil(pi + sh, P2 X , pn)(Xi - pi)/2 _ 0. 

The quantity fi(p) - Ti(p) must be nonnegative, for otherwise we could choose 
(xi - pi) so small that (5) could not hold. (We note here fni(x) > 0 for x E D by 
hypothesis.) A similar consideration in the case where pi > xi shows that 
fi(p)- Ti(p) < 0. Hence fi(p) = T1(p). In the same manner one can show that 
ft(p) = Ti(p), i = 2, *.. , n. Thus Q*(x) and T(x) are identical. 

The idea for this note occurred to the author after hearing a lecture by Prof. 
Ranko Bojanic [1] on "best" one sided approximation in the case of functions of one 
variable. 
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A Close Approximation Related to the Error 
Function* 

By Roger G. Hart 

A function has been found that closely approximates the integral function 

F(x) = exp (-t2/2) dt 

for all real values of x. 
Let 

P W = exp _X /2) exp (-x2/2)(1 + bx2) + 

P(x) = exp (-x Po- + [P2+- exp (+ bx/2)/(1 + bx2) /2/(1 + ax2)]112j 

Po + x {exp (-x/2) - [po22 + exp (-x2/2)(1 + bx2)"2/(1 + a.2)]"2}, 
where Po = (,r/2)I/2 _ 1.253314137, 

1 + (1 - 2ir2+ 6i)1/2 2 .212023887 
2w 
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and 

b = 2ira2 -- .282455120. 

As may be readily verified, by inspection or substitution, P(x) has the following 
properties in common with F(x): 

(1) For all real x, P is real, positive and finite. 
(2) For all real x, dP/dx is real, negative and finite. 
(3) Forallrealx, P(x) + P(-x) = (2ir)12. 
(4) As x 0, P(x) -> (ir/2)112. 

(5) As x 0, dPldx >---1. 
(6) As x , P -0 and xexp (x2/2)P(x) 1. 
(7) As x xo, dP/dx 0 and (d/d(x-2))[x exp (x2/2)P(x) -1. 

Further resemblance between the two functions may be seen in the following table, 
where their values are compared for several x-values: 

x F(x) P(x) 
.1 1.1534806 1.1534812 
.5 .77339 .77344 

1.0 .3977 .3978 
2.0 .05703 .05705 
3.0 .0033837 .0033844 
5.0 7.18529 X 10-v 7.18532 X 10-7 

10.0 1.910014 X 10-23 1.910008 X 10-21 

Values for F(x) were obtained from [1]. 
The following table may be of help in assessing the possible applications of P(x) 

approximations: 

Magnitude and Magnitude and x- 
Integral Approximation x-location of location of greatest 

I A greatest absolute relative error, 
error, IA-imax I(AJ1)/IImax 

oo 
exp (-t2/2) dt P(x) .00013 for x near .00055 for x near 

?41 +1.7 
fS2 

exp (-t2/2) dt P(xi) - P(X2) .00027 for xi near .0007 for small x- 
il -1, X2 near +1 interval with x1 

and X2 both near 
+2 or -2 

exp (-t2/2) dt 1 - P(x) .00011 for x near .00016 for x near 

2 2~~~~~~~~~~~~~~~~~~~~. 
f exp (-t2) dt 1 - P(\v2x) .00011 for x near .00016 for x near 

V\/7r 7r t1.7 4- .6 

(the error function) 

When compared with other approximations related to the error function,2' ' 345 

P(x) is seen to require more steps of computation but to mimic the integral func- 
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tion more faithfully over the whole x-range. However, the Hastings approximation5 
achieves, with its four arbitrary constants, a better fit in the range of low, positive 
x-values most often of interest, and it is therefore preferable for most applications. 
For x > 2, the Hastings approximation does not fit as well as P(x). This leads to a 
somewhat paradoxical observation: While the greatest absolute error for F(x) esti- 
mated from the Hastings approximation is only about one-fifth that obtained with 
P(x), the greatest relative error with the latter is two orders of magnitude below 
those encountered with the Hastings approximation. 
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Rational Approximations to the Solution of the 
Second Order Riccati Equation* 

By Wyman Fair and Yudell L. Luke 

I. Introduction. In a previous work M\'Ierkes and Scott [1] constructed con- 
tinued fraction solutions to the first order Riccati equation by using a sequence of 
linear fractional transformations. Fair [2] utilized the r-method, see the paper by 
Luke [3], to develop main diagonal Pad6 approximations to the solution of the first 
order Riccati equation with rational coefficients. Rational approximations are ad- 
vantageous to study the behavior of the solutions in a global sense. That is, they 
are useful for evaluation of functional values in the complex plane including zeros 
and poles. 

In this paper we develop continued fraction (and hence rational) approxima- 
tions to the solution of a second order nonlinear equation which includes as special 
cases the equations treated in [1] and [2]. These approximations are obtained by 
using a sequence of linear transformations which leave the differential equation 
invariant, see Davis [4], and are presented in Section II. For an application, in 
Section III, the algorithm is applied to obtain approximations to Painleve's first 
and second transcendents. 

II. Development of the Rational Approximations. Consider the generalized 
second order Riccati equation 

Received May 16, 1966. 
* This work was supported by the National Aeronautics and Space Administration under 

Contract NASA Hq. R&D 80X0108(64), 10-74-740-124-08-06-11, PR10-2487. 


	Cit r84_c96: 
	Cit r85_c97: 


