Some Stable Difference Approximations to a
Fourth-Order Parabolic Partial Differential
Equation

By G. Fairweather and A. R. Gourlay

1. Introduction. Consider the fourth-order parabolic partial differential equation
(1a) @+?l‘=0, 0<z2=<1t>0,
ot !
subject to the initial conditions
u(,0) = go(z)
() g—;‘ (2,0) = g(z)

for 0 £ z = 1, and the boundary conditions

u(o, t) = fo(t), u( 1; t) = fl(t)7

u " tz0.
Tro0 =), 33,0 = o),
Following Richtmyer [11] we introduce two new variables ® and ¥ defined by
ou u
d =% =22
(2) at’ dx?

Eq. (1a) can now be rewritten as two simultaneous partial diffcrential cquations of
the form

&) w_ _sv ov_w
at 9z’ at ax?’
or as the second-order system
oQ e
4 e 425
(4) at ax?’
where

Q=[$] and A=[(1) '(')1].

SinceAd + A" = 0and A7 = —A, (4) is a Schrodinger type system of partial
differential equations, (Kreiss [6]).

Richtmyer [11] and Evans [5] have derived finite difference methods for the
numerical solution of Eq. (4) which are based on well-known algorithms for the
numerical solution of the scalar equation

e £
5 —=
(5) al ax?
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In this paper, explicit and implicit finite difference methods based on the semi-
explicit method of Lees {7] and the high accuracy method of Douglas [3] respectively
are formulated for the numerical solution of Eq. (4), and algorithms for the de-
termination of the solution « of (1) from the calculated values of ® and ¥ derived.
By means of numerical experiments, these methods will be compared with those of
Richtmyer and Evans. In addition, the new explicit and implicit methods will be
generalised to the case of variable coefficients. Finally, finite difference schemes for
the solution of the equation

R &
= — + =5
a2 = 9y

subject to appropriate initial and boundary conditions are considered.

2
%—;—: + V'u = 0, where V’

2. Explicit Methods. A rectangular network of points with mesh sizes A and k
in the z and ¢ directions respectively, where Nk = 1 is superimposed on the region
0 <z =1,¢t = 0. The values of the functions ®(z, t), ¥(z, t) and Q(z, t) at the
mesh points z = th, t = nk(z = 0,1,---, N;n = 0,1, --- ) are given by ¢,
¥i» and o, , respectively.

The method of Evans [5] may be derived by applying the method of Dufort and
Frankel [4] for the solution of (5) to Eq. (4) to obtain the finite difference formula

Oint1 — Wina = 2rA[0i1n + 0in — @ina1 — @iaq)
ie.
(6) (I + 2rd)oinp = (I — 2rd)@ina + 2rd[eipin + @i,
where r = k/h” and I is the 2 X 2 unit matrix. Since
(I +2rd)™" = (I —2rA)(1 + &%)
and A® = —I, Eq. (6) may be written in the explicit form
(7 @iyt = (@] — 2byA)0ina + (el + byd)[0iy1n + ©ianl,

where @, = (1 — a®)/(1 + &), ba = a/(1 + a*), ca = &*/(1 + o).
Writing (7) in terms of the components of w, we obtain Evans’ formulation

Gint1 = Gpin1 + Cor(Pisrn + ditn) — bor(Yis1n + Yictn — 2¥in1)

Yintt = Glin-a + Cr(Wirin + ¥itn) + bar(bivin + dicin — 2bin-1).

This scheme is unconditionally stable, and has local truncation errors of
OK* + K + (k/h)7).

However, it is a three level scheme and so requires starting values on { = k as well

asont = 0.
A finite difference method for the solution of (4) which involves only two time
levels is that based on the semiexplicit method of Lees [7]. This scheme may be

written in the form

(8)

Wip4l — Oip = TA[(I)i—l."-'-l - Witln — Win4l — ‘i’i,n]
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or
(I + rA)oinn = (I —14)0in + rA[0i1nn + 0it1al
from which, on premultiplication by (I + rA)™, we obtain
(9) @iny1 = (@& — 2b,A)oin + (¢ + bA)(0is1n + 0ic1n41).
In terms of the components ¢, , ¥:,» this scheme becomes
(102)  Gins1 = Gpim + C(Piv1n + Sictns1) — b(Yiv1n + Yicantn — 2¢in)
(10b)  Yins1 = @in + c(Yivrn + Yicrnn) + b(Givin + Gictnir — 2¢i0).

It should be noted that formulas (10a) and (10b) must be computed alternately,
whereas the unknowns ¢ n41, ¥jnp1 (j = 1, -+, N — 1) in (8) need only be cal-
culated line by line. The local truncation errors of this method are

O + &k + (k/h))

and so the semiexplicit method appears theoretically to be less accurate than the
method of Dufort and Frankel for the solution of (4). Both methods have the dis-
advantage that, if k and h tend to zero at the same rate, their respective solutions
do not converge to the solution of (4), (see Evans [5], Lees [7]).

The stability of (9) is analysed by the method of Richtmyer [11]. We substitute

]

S

Omn = on e, where g, = [

andx = mh, (m=1,---, N — 1), in (9) to obtain
Ontl = ng

where G, she amplification matrix or symbol, is given by

1 1 —1I1]> —2Rel
(11) G”1+P[2Rez 1—|112]

where | = [l — €®] = —2ire®™”sin (Bh/2) and hence Rel = 2r sin’ (8h/2). It
follows that G*G = I and so the method is unconditionally stable, (Richtmyer
[11]).

3. Implicit Methods. The most widely used implicit methods for the numerical
solution of the scalar equation (5) are the Crank-Nicolson method (2] and the high
order correct difference method (H.0.C.M.) of Douglas [3]. When the former method
is applied to the vector equation (4), we obtain the algorithm used by Richtmyer
in the form

(12) (I — 2r A6 @ins1 = (I + 31 A8 ) @i,

where 8, is the usual central difference operator in the z direction. The totality of
difference equations of type (12) at each time step leads to a system of (N — 1)
linear equations for the (N — 1) unknowns

Win = [3:::], (7« = 1, "',N e 1),
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which may be written in the form
(13) AW, = ®W, + k

where W,. = [@1,m, "+, @v—1,m]", m = n,n + 1, and k is a constant vector arising
from the boundary conditions. The matrices @ and & are tridiagonal matrices of
order 2(N — 1) which may be written in the block forms
Al Ag B1 B2
A, A A, . B, B, B..
(14) a=|"" VLV L e
L. . .. :
I- Az Al BZ B:
where the 2 X 2 matrices 4;, B;, (¢ = 1, 2) are given by
Al =] + TA, Az = —%TA, Bl =] — TA, Bz = %TA.

This system of equations may be solved by the well-known algorithm based on
Gaussian elimination, (Richtmyer [11]).

The high order correct method (H.O.C.M.) of Douglas [3] applied to (4) yields
the scheme

(101 =+ 121‘A)(.)1',,,+1 + (I - 67’A)[(.),'+1,n + (.)z'_l,n+1]
= (IOI - 121‘A)(01‘,,, -+ (I -+ 67’A)[(.)i+1_n + (:),;_1,,,]

which also requires the solution of a block tridiagonal system of equations of the

form (13) at each time step. In this case, the matrices 4;, B;, (¢ = 1, 2) are

given by

A] = 101 + 12"’A, Az =] — 67'A, B1 = 10 — 127‘A, Bg =7 + 6rA.
It is easily shown that the local truncation errors of (12) and (15) are O(h* + k7)

and O(h* + k?) respectively. The stability of these methods may be analysed by
the method of Richtmyer which yields amplification matrices of the form

(15

1—d 2
1+d 14 a2
[ Y R ey
14+d 1+ d&
where
d = 2rsin® (Bh/2)
for (12) and
g — brsin’ (8h/2)
3 — sin? (Bh/2)

for (15). Since G is a unitary matrix, it follows that both methods are uncon-
ditionally stable.

4. Calculation of the Solution of (1). Eq. (1) arises in the study of the transverse
vibrations of a uniform flexible beam hinged at both ends. The quantities ¢;,,, and
¥: . are thus the values of the velocity and the bending moment respectively at the
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pointz =th (i=1,--- ,N —1)attimet=nk (n = 1,2, --- ) and may, in fact,
be the physical quantities we seek from the differential equation (1). If we also
require the displacement u;,, at the point (zh, nk), this may be obtained from the
values of ¢;,, and ¢, , by means of the algorithm

(16) Ui1,n — 2Uin + Uian = (h2/12)(1//,~+1_,, + 10y, + ll/i—l.n)

which is based on the method of Numerov [9] for the solution of the second order
ordinary differential equation

"= f(z, ).
If ¢ is calculated by the semiexplicit method (10) the local truncation error is

O(R®); otherwise it is O(A®). A more accurate algorithm for use in conjunction with
the high accuracy method (15) is

Uit1,n — 2Uin + Ui-1,n

(17) h
(¢1.+1 n + 10¢1 n + \l/z —1 n) 6:: (¢l n Qsi.n—l)

which has a local truncation error of O(h8). In order to determine Uin (2=1, -+,
N — 1) from formula (16) or (17) a tridiagonal system of equations must be
solved.

5. Variable Coefficient Case. Let us now consider the partial differential
equation

ou , & 82u)
which, subject to the initial and boundary conditions (1b) and (1c), describes the

transverse vibrations of a beam of variable density and/or cross-section. By the
introduction of the new variables

PO
at’ oz et
Eq. (18) may be written as the second-order system
o
(19) £ = A(z )
where '

_ [;’;] and A(z) = [a(;:) __1}.

The finite difference schemes described in Sections 1 and 2 of this paper can be
easily generalized to this case of variable coefficients without loss of accuracy. Care
must, however, be taken when generalizing the high accuracy scheme (15). Writing
Eqg. (19) in the form

4 ag IQ
[4(2)] T
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and following Douglas [12] we obtain the scheme
(20) 1‘1‘27[A(xi+1)]_1(0i+1.n+1 - 0i+1,n) + %[A(xi)]_l(mi,n-ﬂ — (')i.n)
+ 2[A(Z)] T (@itatt — ©Gic1n) = 378, (@iint1 + in)

which is again correct to O(h* + k*) and requires the solution of a block tridiagonal
system of equations at each time step.

Since the differential equation (19) and hence the approximating difference
equations have variable coefficients, no longer can we use the method of Richtmyer
to examine stability. Using energy methods Lees [13] has established that the
Crank-Nicolson method and high accuracy method of Douglas for the solution of
(5) are unconditionally stable when generalised to the equation

By an extension of Lees’ techniques it may be possible to discuss the stability of
the generalisations to (19) of the methods outlined in Sections 2 and 3 of the present
paper. This will, however, require further investigation.

6. Two-Space Variable Case. The partial differential equation
ou . 8, &
(21) W+V‘u=0, where V =5_i5+8_1—f’
subject to appropriate initial and boundary conditions arises in the study of trans-
verse vibrations of a uniform plate and may be written in the form

Q

- 2
(22) T AV'Q
by introducing the variables
P = u and ¥ = V'u
at
where
[ - -1
n_[w] and A—[l ]
as before.

Eq. (22) can be solved by applying any of the finite difference techniques for
the numerical solution of the corresponding scalar equation

e 2
— = V.
a- '’

For example, the alternating direction implicit (ADI) method of Peaceman and
Rachford [10] when applied to Eq. (22) yields the algorithm

- %TA‘Szz]@:j.nH = [l + %TAauzl")i.i,n’

23)
( [ — A8 J0ijnn = [ + 348 0% s
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in the usual notation where the local truncation errors are O(A* + k?). The dis-
placement u; ;. at the poine (¢h, jh, nk) (¢,j = 1,--- ,N — 1;n = 1,2, ---) may
then be determined by solving at each time step the Poisson equation

(24) Viu = ¥(z, y, 1),

by the Peaceman-Rachford iterative method

(25) [1— 38 50" = [+ 478, Tulsm — 3rh%s;

25 .

[ — 38 T30 = [+ 38 Tui5h” — 3hiim,

where , previously equal to k/h’, is now an iteration parameter.

A more accurate method of solving (22) is that of Mitchell and Fairweather
[8] which, in its simplest form, that is, for the solution of (22) with zero boundary
conditions, may be written as

I —3(rd — 3 D)8 Jolinn = [ + 3(rA + 3 1)8]0ijm
I — 3(rd — 3 D8 oismen = [[ + 3(rd + 3 1)8"J0%j 01 .
This method has local truncation errors of O(h* + 7).
Eq. (24) can then be solved by the iterative method based on (26) which takes
the form
1 — 3(r — D& T = 11+ 30 + 1) ulsn — 300 — Dism
(27) 21, (m+1) 21, (m+1)* -
01— 30— )& uGn =1+ 350+ HéTuiin — 3(r + §)Viin

where ¥i,5,, = K[l + (8" + 8,") Wi jm -

The stability of the ADI methods (23) and (26) may be examined by elimi-
nating the auxiliary vector mf,,,.,,,+1 and applying the method of Richtmyer. For
example, if ©7 ;41 is eliminated from (23), we obtain the equation

I — A8 — A8, wi i1 = [I 4+ AT + 2rds, 0 m

(26)

which may be simplified to take the form
[(1 — 36,78, )] — 3rA (8. + )]s jn11
= [(1 — ¥"88")] + 3rA(8" + 8,")|wism
since A> = —1I. If we now substitute
Ompn = omeiﬂzeiw
where g, = [g:] andx = mh,y = ph (m,p = 1,---, N — 1), simple manipulation
yields
on1 = Gon
where G is again of the form of the unitary matrix of Section 3 with
d= 2r[sin® (Bh/2) + sin® (vh/2)]
1 — 4rsin? (Bh/2) sin? (yh/2)’

and hence the ADI method is unconditionally stable. A similar analysis applied
to (26) yields a unitary amplification matrix of the same form as before with d in
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this case given by

g = 2r{3lsin’ (Bh/2) + sin’ (vh/2)] — 2 sin’ (8h/2) sin’ (vh/2)}
3 — [sin® (BR/2)] + sin? (yh/2) — 12(r* — ) sin® (8h/2) sin? (vh/2)’

and thus the ADI method (26) is also unconditionally stable.

The convergence of the iterative procedure (25) has been discussed by several
authors, for example, Birkhoff et al., {1], Varga [14], who have shown that the
procedure converges for all positive values of the iteration parameter r. In fact,
this parameter may be varied from iteration to iteration to accelerate convergence,
(Birkhoff et al., [1]). Similar results have been established by Mitchell and Fair-
weather [8], [15] for the ADI method (27).

7. Numerical Experiments. The finite difference methods outlined in Sections
2 and 3 of the present paper are now used to solve a vibrating beam problem con-
sisting of Eq. (3) together with the initial conditions

u(r,0) = —1% (22" —2* — 1),
(28a) 0<z2
0
&u(x,O) = 0,

A

and the boundary conditions

u(0,t) = u(l,t) =0,

2 t

(28b) 62 9
5;14(0, t) = (%é'u(l, t) =0,

v
=}

This is the problem considered by Evans, the theoretical solution being
(29) u(z, t) = D dysin (2s + 1)az cos (2s + 1)°*t

s=1
where d, = —8/(2s + 1)°".

If we consider Eq. (4), the initial and boundary conditions may be derived
from (28a) and (28b) and are given by

0
= <z <
(30a) Q(z,0) [x _ xz:l, 0sz=1,
and
(30) 20,0 = a(1,0 = ], iz 0,
respectively.

In order to provide a comparison with Evans, we choose h = 0.05, k¥ = 0.00125
and hence r = 1. In Table I, the differences between the theoretical solution for u
given by (29) and the computed solution obtained by the stated methods are shown
fort = 0.02,z = jh,j = 1, 2, -, 10. Similar results for the bending moent
¥ = 9%y/d2" are quoted in Table II.

Since each method is unconditionally stable for all values of the mesh ratio r,
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the choice 7 = 3} is rather restrictive. Consequently in the second series of experi-
ments, calculations are carried out to ¢t = 1 withr» = 2 and (a) A = 0.05,k = 0.005,
and (b) A = 0.1,k = 0. 02 The errors in the displacement % and the bending mo-
ment ¥ at the nodes t = = (0.1)7,7 = 1,2, ---, 5 are quoted in Table III
and Table IV respectlvely. It appears that for case (b) Evans’ method is by far
the least accurate due to the dominance in the local truncation error of ¥ of the
term (k/h)’9°®/0t* which, for this problem, is equal to

2
(%“) ;0 8r(2s + 1) sin (2s + 1)7z sin (2s + 1)

In case (b), (k/h)* = 1/25 while in case (a) and the first set of experiments (k/h)*
has the values 1/100 and 1/1600 respectively.

Although the high order correct method of Douglas given by (15) is the most
accurate, it requires the most computing time. The semi-explicit method (10) is
seen to be as accurate as Evans’ method when (k/h)® is small, and more accurate
when (k/h)? is large. It requires about as much computing time as Evans’ method
and has the advantage of requiring starting data only on the initial line so that no
extrapolation is necessary to find starting data on the line ¢ = k. Richtmyer’s
method compares favorably with the explicit methods, but requires more com-
puting time.

All calculations were carried out to ten places of decimals on the IBM 1620
computer of the University of St. Andrews.
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