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1. Introduction. Consider the fourth-order parabolic partial differential equation 

(1a) dt2 ~~+ 0x ? 0 < x < 1, t > 0 t2 4~. 

subject to the initial conditions 

U(XO ) = go(x) 

(lb) au 
(X)) =91( 

for 0 ? x < 1 and the boundary conditions 

u(O, t) = fM(t), u(1, t) = Mt), 

02(0 t ) = po(t), a2(1 t ) = pi(t t ), 

Following Richtmyer [11] we introduce two new variables 4> and T defined by 

(2) ) a= ' -= x 

Eq. (la) can now be rewritten as two simultaneous partial differential equations of 
the form 

asD a2T atf a2) 
at a.2' at ax2 

or as the second-order system 

(4) at A d 2 

where 

and A =[? ] 

Since A + A' = 0 and A-' = -A, (4) is a Schr6dinger type system of partial 
differential equations, (Kreiss [6]). 

Richtmyer [11] and Evans [5] have derived finite difference methods for the 
numerical solution of Eq. (4) which are based on well-known algorithms for the 
numerical solution of the scalar equation 

d 2v (5) av = av 
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In this paper, explicit and implicit finite difference methods based on the semi- 
explicit method of Lees 171 and the high accuracy method of Douglas [3] respectively 
are formulated for the numerical solution of Eq. (4), and algorithms for the de- 
termination of the solution u of (1) from the calculated values of 4P and T derived. 
By means of numerical experiments, these methods will be compared with those of 
Richtmyer and Evans. In addition, the new explicit and implicit methods will be 
generalized to the case of variable coefficients. Finally, finite difference schemes for 
the solution of the equation 

(2 2 92 

a + V4U = where V2 a +3 
at2 ax2 a9y2 

subject to appropriate initial and boundary conditions are considered. 

2. Explicit Methods. A rectangular network of points with mesh sizes h and k 
in the x and t directions respectively, where Nh = 1 is superimposed on the region 
0 < x < 1 t > 0. The values of the functions P(x, t), T(x, t) and Q(x, t) at the 
mesh points x = ih, t = nk(i = 1, ,N; n = 0,1, ) are given by 40i,n, 

4/i, and Win respectively. 
The method of Evans [5] may be derived by applying the method of Dufort and 

Frankel [4] for the solution of (5) to Eq. (4) to obtain the finite difference formula 

(0i,n+1 - (i,n-l - 2rA[(z+ln + &)i-l,n - (G)i,n-1 - (G)i,n+l] 

i.e. 

(6) (I + 2rA)Xtn+l = (I - 2rA)(0ian,1 + 2rA[6)i+ln + Wi-1,n] 

where r k/h2 and I is the 2 X 2 unit matrix. Since 

(I + 2rA )-1 = (I - 2rA ) ( 1 + 4r2) 

and A2 _-I, Eq. (6) may be written in the explicit form 

(7) (inal= (a2 - 2b2rA)Jimn-l + (C2rI + b2rA)[?i+ln + (i-in] 

where aa, = (1 - 2)/(1 + a 2), ba = a/(l + a2t) Ca = a2/(1 + a2). 

Writing (7) in terms of the components of a, we obtain Evans' formulation 

4fi,n+l 
= a2r4i,n-1 + 

C2r(Oi+ln 
+ 4iil,n) 

- 
b2r(?i+l,n + i-1,n - 2tpi n-l) 

(8) 
'k i,n+l = a2r4-i,n-1 + C2r(4/i+1,n + 40i-1,n) + b2r(Qi+ln + i-l,n -2in-1)- 

This scheme is unconditionally stable, and has local truncation errors of 

O(h2 + k2 + (k/h)2). 

However, it is a three level scheme and so requires starting values on t - k as well 
as on t = O. 

A finite difference method for the solution of (4) which involves only two time 
levels is that based on the semiexplicit method of Lees [7]. This scheme may be 
written in the form 

('in+l - fin = rA[6)ii,+i + GXi+l,n - ')i,n+l- in] 
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or 

(I + rA )j, +1 = (I -rA ), + rA[(-)i-ln+l + (Ji+l~n 

from which, on premultiplication by (I + rA )-1, we obtain 

(9) (Ji,n+1 = (arI - 2brA)()in + (cr1 + brA)(G)i+ln + (C)i-1,n+1). 

In terms of the components in) Xienthis scheme becomes 

(lOa) 0i,n+1 = aroin + Cr(Gi+l,n + 4i-1,n+l) - br(Ii+1,n + 4ti-ln+l -2ii,n) 

(lOb) 4/i,n+l = arh/ien + Cr(4ti+ln + 4ji-1,n+1) + br(Oi+ln + k0i-1,n+1 -2?>in) 

It should be noted that formulas (lOa) and (lOb) must be computed alternately, 
whereas the unknowns 0j n+), ,jn+1 (j = 1, ... * N - 1) in (8) need only be cal- 
culated line by line. The local truncation errors of this method are 

*O(h2 + k + (k/h)) 

and so the semiexplicit method appears theoretically to be less accurate than the 
method of Dufort and Frankel for the solution of (4). Both methods have the dis- 
advantage that, if k and h tend to zero at the same rate, their respective solutions 
do not converge to the solution of (4), (see Evans [5], Lees [7]). 

The stability of (9) is analysed by the method of Richtmyer [11]. We substitute 

Wm,n = Onel, where en = [an 

and x = mh) (m = 1, ... ,N - 1), in (9) to obtain 

Vn+1 = G~n 

where G, *he amplification matrix or symbol, is given by 

(11) G ~~~~1 + 12 2Re I 1 _ 
1 1 12] 

where 1 = r[l -eith] = -2iretfhI2 sin (fh/2) and hence Re 1 = 2r sin2 (h/2). It 
follows that G*G = I and so the method is unconditionally stable, (Richtmyer 
[11]). 

3. Implicit Methods. The most widely used implicit methods for the numerical 
solution of the scalar equation (5) are the Crank-Nicolson method [2] and the high 
order correct difference method (H.O.C.M.) of Douglas [3]. When the former method 
is applied to the vector equation (4), we obtain the algorithm used by Richtmyer 
in the form 

(12) (I- rAb.;)in+l = (I + Ir A ; WiX 

where &. is the usual central difference operator in the x direction. The totality of 
difference equations of type (12) at each time step leads to a system of (N- 1) 
linear equations for the (N - 1) unknowns 

n= (i = 1, **..N - 1), 
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which may be written in the form 

(13) GW3W, = (BW, + k 

where W,,,m [ *,, * *X ()N-lm],T m = n, n + 1, and k is a constant vector arising 
from the boundary conditions. The matrices a, and 6( are tridiagonal matrices of 
order 2(N -1) which may be written in the block forms 

[Al A2 -B1 B2 
A2 A, A2. B,1B B2. 

(14) a= 
Lt A2 A] _ [ B2 Bl] 

where the 2 X 2 matrices Ai, Bi, (i = 1, 2) are given by 

A = I + rA, A2 =-4rA, B1=I-rA- , B2 =rA. 

This system of equations may be solved by the well-known algorithm based on 
Gaussian elimination, (Richtmyer [11]). 

The high order correct method (H.O.C.M.) of Douglas [3] applied to (4) yields 
the scheme 

(15) (10I + 12rA )6)i,+? + (I - 6rA)[ [i+i, + xi-1,+1] 

- (101 - 12rA) ii,n + (I + 6rA) [in + (,] 

which also requires the solution of a block tridiagonal system of equations of the 
form (13) at each time step. In this case, the matrices Ai, Bi, (i = 1, 2) are 
given by 

Al = 10I + 12rA, A2 =I - 6rA, BI = 1OI- 12rA, B2 =I + 6rA. 

It is easily shown that the local truncation errors of (12) and (15) are O(h2 + k2) 
and O(h4 + k2) respectively. The stability of these methods may be analysed by 
the method of Richtmyer which yields amplification matrices of the form 

2+d -1 - d 2d 
1 + d2 1 + d 2 

G F 2d L-2d 1-d2 
1 + d2 1 Pd2 

where 

d = 2r sin2 (fh/2) 

for (12) and 

6r sin2 (Oh/2) 
d 3 - sin2 (/3h/2) 

for (15). Since G is a unitary matrix, it follows that both methods are uncon- 
ditionally stable. 

4. Calculation of the Solution of (1). Eq. (1) arises in the study of the transverse 
vibrations of a uniform flexible beam hinged at both ends. The quantities oin and 
{j,, are thus the values of the velocity and the bending moment respectively at the 
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point x = ih (i= 1,* N-1) at time t = nk (n = 1,2, )and may, in fact, 
be the physical quantities we seek from the differential equation (1). If we also 
require the displacement ui,,n at the point (ih, nk), this may be obtained from the 
values of oi, and i*,n by means of the algorithm 

(16) ui+,n- 2ui~n + U*-l,n = (h2/12)(t'i+?,n + lotion + 4/i-l,n) 

which is based on the method of Numerov [9] for the solution of the second order 
ordinary differential equation 

Y = f(x, y). 

If 4' is calculated by the semiexplicit method (10) the local truncation error is 
0(h'); otherwise it is 0(h6). A more accurate algorithm for use in conjunction with 
the high accuracy method (15) is 

Ui+ln - 2ui, + Ui-ln 

(17) h _ 

= 12 (4'i?izn + 104im,n + i ) -240r 2(x n- n-l) 

which has a local truncation error of O(h8). In order to determine ui, * (i = 1, **, 
N - 1) from formula (16) or (17) a tridiagonal system of equations must be 
solved. 

5. Variable Coefficient Case. Let us now consider the partial differential 
equation 

2 ~2 2 

(18) a u + -2 (x)u 0, > 
at, aX2V aj 

which, subject to the initial and boundary conditions (lb) and (l), describes the 
transverse vibrations of a beam of variable density and/or cross-section. By the 
introduction of the new variables 

au a 2u 
a Ft a X2 x 

Eq. (18) may be written as the second-order system 

(19) = A(x) 2 at aX2 
where 

= [s] and A(x) = [ 711 
The finite difference schemes described in Sections 1 and 2 of this paper can be 

easily generalized to this case of variable coefficients without loss of accuracy. Care 
must, however, be taken when generalizing the high accuracy scheme (15). Writing 
Eq. (19) in the form 

2 

at ax2 
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and following Douglas [12] we obtain the scheme 

( 20 ) [A(i+?1)]-(6<+1,-+1 - i?ln) + 5[A(x )]'(&6)i,?n+1i - ) 

+ 12[A(Xi_-(6)i-n1 - i-ln) = 'r52(Wi,n~l + (Jin) 

which is again correct to O(h4 + k2) and requires the solution of a block tridiagonal 
system of equations at each time step. 

Since the differential equation (19) and hence the approximating difference 
equations have variable coefficients, no longer can we use the method of Richtmyer 
to examine stability. Using energy methods Lees [13] has established that the 
Crank-Nicolson method and high accuracy method of Douglas for the solution of 
(5) are unconditionally stable when generalised to the equation 

av a2u 
Ba = ao(x, t) aX2. 

By an extension of Lees' techniques it may be possible to discuss the stability of 
the generalizations to (19) of the methods outlined in Sections 2 and 3 of the present 
paper. This will, however, require further investigation. 

6. Two-Space Variable Case. The partial differential equation 

(21) + V4u = O. where V2 + 
C ( 

a t2 5 
subject to appropriate initial and boundary conditions arises in the study of trans- 
verse vibrations of a uniform plate and may be written in the form 

(22) at = A V2Q 

by introducing the variables 

4= au and A=V2u at 

where 

and A-[I 71] 

as before. 
Eq. (22) can be solved by applying any of the finite difference techniques for 

the numerical solution of the corresponding scalar equation 

(9v _2 
v_ Vv. 

For example, the alternating direction implicit (ADI) method of Peaceman and 
Rachford [10] when applied to Eq. (22) yields the algorithm 

[I- _rAS 2]4*, = [I + 1rA6 2]j6) 

(23) [I - 1MA21,. [I + = iXjZ1*. 
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in the usual notation where the local truncation errors are 0( h2 + k2). The dis- 
placement Uijn at the poine (ih, jh, nk) (ij = 1, * * , N -1; n = 1, 2, ) may 
then be determined by solving at each time step the Poisson equation 

(24) V2U = TI(X, y, ), 

by the Peaceman-Rachford iterative method 

[1 - ]( = [1 + 2rb,]2]ujn -rh2i- 

(25) [1 - = [1? - 

where r, previously equal to k/h2, is now an iteration parameter. 
A more accurate method of solving (22) is that of Mitchell and Fairweather 

[8] which, in its simplest form, that is, for the solution of (22) with zero boundary 
conditions, may be written as 

[I - 4(rA - JI)b 2]W*? = [I + (rA + ? I) 3i2] Wijn 

(26) [I - 1(rA - - I)aV2pi?j,n+l = [I + X(rA + 6 I)a2]4S,j,n+l - 

This method has local truncation errors of 0(h h+ k2). 
Eq. (24) can then be solved by the iterative method based on (26) which takes 

the form 

[1 - (r - 1)a 2]u(m+l)* = [1 + (r + )2]Un, 1(r -jn 

( 27 2[1 - -) = [1 ? 2(r + ,)bx2]Utmj1)* -(r + 6 

where )ijn = h2[1 + -f52 ? av2)]zj~ 
The stability of the ADI methods (23) and (26) may be examined by elimi- 

nating the auxiliary vector 4im,n+1 and applying the method of Richtmyer. For 
example, if a*,jn is eliminated from (23), we obtain the equation 

[I - rA322][I -_ rA 2]i j n+ = [I + 'rAbx2][I + 'rAbv2]i j n 

which may be simplified to take the form 

[(1 _ 1r2a 2a2)I -_ rA (b 2 + 2) 

= [(1 - lr2a 2bby2)I + jrA(b 2 + aV2)]ijn 

since A2 = -I. If we now substitute 

em,p,n = eme e 

where on = an and x = mh, y = ph (m, p = 1, , N - 1), simple manipulation 

yields 
On+1=Gen 

where G is again of the form of the unitary matrix of Section 3 with 

d = 2r[sin2 (jBh/2) + sin2 (yh/2)] 
1 - 4r sin2 (fh/2) sin2 (yh/2)' 

and hence the ADI method is unconditionally stable. A similar analysis applied 
to (26) yields a unitary amplification matrix of the same form as before with d in 
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this case given by 

d - 2r{3[sin2 (,3h/2) + sin2 ('yh/2)] - 2 sin2 (Oh/2) sin2 ('yh/2)} 
3-[sin2 (fh/2)] + sin2 (#yh/2) - 12(r2 - h) si2 (sh/2) sin2 (yh/2)' 

and thus the ADI method (26) is also unconditionally stable. 
The convergence of the iterative procedure (25) has been discussed by several 

authors, for example, Birkhoff et al., [1], Varga [14], who have shown that the 
procedure converges for all positive values of the iteration parameter r. In fact, 
this parameter may be varied from iteration to iteration to accelerate convergence, 
(Birkhoff et al., [1]). Similar results have been established by Mitchell and Fair- 
weather [8], [15] for the ADI method (27). 

7. Numerical Experiments. The finite difference methods outlined in Sections 
2 and 3 of the present paper are now used to solve a vibrating beam problem con- 
sisting of Eq. (3) together with the initial conditions 

u(x, 0) = I (2x2- x3-1) 
12 

(28a) 0 _ x < 1, 

-u(xO) = 0, at 
and the boundary conditions 

u(O, t) = u(1, t) = 0, 

(28b) a2 a2 t > 0. 
-u(0 ) O= -u( t) = 0, 

ax2 aX2 
This is the problem considered by Evans, the theoretical solution being 

(29) u(x, t) = >j d, sin (2s + 1)irx cos (2s + 1)27r2t 
8a1 

where d, = -8/(2s + 1 ) 7r5. 

If we consider Eq. (4), the initial and boundary conditions may be derived 
from (28a) and (28b) and are given by 

(30a) L(x, 0) = [ 2] 0 < x 1 

and 

(30b) (0,t) =i2(1,t) = t8]0 
respectively. 

In order to provide a comparison with Evans, we choose h = 0.05, k = 0.00125 
and hence r = a. In Table I, the differences between the theoretical solution for u 
given by (29) and the computed solution obtained by the stated methods are shown 
for t = 0.02, x = jh, j = 1, 2, * , 10. Similar results for the bending moment 
' = a2y/ax2 are quoted in Table II. 

Since each method is unconditionally stable for all values of the mesh ratio r, 
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the choice r 2 is rather restrictive. Consequently in the second series of experi- 
ments, calculations are carried out to t = 1 with r = 2 and (a) h = 0.05, k = 0.005, 
and (b) h = 0.1, k = 0.02. The errors in the displacement u and the bending mo- 
ment I at the nodes t = 1, x = (0.1)j, j = 1, 2, -*. , 5 are quoted in Table III 
and Table IV respectively. It appears that for case (b) Evans' method is by far 
the least accurate due to the dominance in the local truncation error of I of the 
term (k/h)20214/t2 which, for this problem, is equal to 

(-)E 87r(2s + 1) sin (2s + 1)7rx sin (2s + 1)2wr2t. 

In case (b), (k/h)2 = 1/25 while in case (a) and the first set of experiments (k/h)2 
has the values 1/100 and 1/1600 respectively. 

Although the high order correct method of Douglas given by (15) is the most 
accurate, it requires the most computing time. The semi-explicit method (10) is 
seen to be as accurate as Evans' method when (k/h)2 is small, and more accurate 
when (k/h)2 is large. It requires about as much computing time as Evans' method 
and has the advantage of requiring starting data only on the initial line so that no 
extrapolation is necessary to find starting data on the line t = k. Richtmyer's 
method compares favorably with the explicit methods, but requires more com- 
puting time. 

All calculations were carried out to ten places of decimals on the IBM 1620 
computer of the University of St. Andrews. 
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