
Numerical Evaluation of Wiener Integrals 

By Alan G. Konheim and Willard L. Miranker 

Abstract. A systematic study of quadrature formulae for the Wiener integral 
f F[x]w(dx) of the type f F[O(u, )]v(du) is presented. The Cameroon amd Vladi- 
mirov quadrature formulae, which are the function space analogues of Simpson 's 
Rule, are shown to fit into this framework. Numerical results are included. 

1. Introduction. In this paper we consider the problem of obtaining numerical 
approximations for the Wiener integral. The solution of the corresponding problem 
for multiple Riemann integrals is provided by a class of quadrature formulae of the 
type 

(1.1) j] j f(xi , x2 X x,.) dxi dx2 ... dx in f(in) 

where the constants {Xi,,n and points {Xie,} are chosen by a variety;of means. Since 
the Wiener integral of a functional F may, in many instances, be defined as a suitable 
limit of repeated Riemann integrals, we are led to consider quadrature formulae, 
which are formal limits of (1.1) of the form 

(1.2) f F[x]w(dx) | F[O(u, .)]v(du). 

Here, fc F[x]w(dx) denotes the Wiener integral, and f F[O(u, )Jv(du) denotes an 
integral over some Euclidean space. 

In [1] Cameron determined a pair (v, 0) by imposing on (1.2) the condition 
that the formula be exact for polynomial functionals of degree ?3. Imposing the 
same requirement, Vladimirov [5] constructed a family of pairs (v, 0). 

In this paper we shall develop a class of approximations of the type given in 
(1.2). The pair (v, 0) is chosen so that the resulting quadrature formula 

f F[O(u, -)]v(du) 

is exact for polynomial functionals of degree <2n + 1. The Cameron and Vladi- 
mirov results are special cases. 

Quadrature formulae for Riemann integrals achieve a certain order of accuracy 
by the imposition of a requirement of exactness for polynomials of degree ?<k. To 
increase the accuracy the range of integration is partitioned into subsets of "fine- 
ness" A, and the quadrature formula applied within each subset. Under certain 
conditions the approximation may then be shown to have an error 0 (e(k)) as 
A -* 0 where the exponent e(k) is characteristic of.the quadrature procedure. The 
analogue of the partition of the range of integration is also available for Wiener 
integrals. It takes the form of integrating over finite dimensional subspaces of C (the 
space of continuous functions on [0, 1] which vanish at 0). Using this device Cameron 
obtained the error estimate O(n-2) while Vladimirov proved only the estimate 

Received May 16, 1966. 

49 



50 ALAN G. KONHEIM AND WILLARD L. MIRANKER 

o(1) where m denotes the dimensionality of this subspace. This method, when ap- 
plied to our quadrature formulae, yields error estimates of the form 

O(M-('+'-') )(or o(l ) )(as m-+ oo ) 

where the exponent vq depends upon the pair (v, 0). We are thus able to provide an 
analogue of the classical quadrature theory for Riemann integrals. 

The Wiener integral plays a role in such diverse fields as probability theory, 
differential equations, statistical mechanics, and quantum physics [3]. Extraction of 
numerical values from the solutions of problems which are expressed in terms of 
Wiener integrals is therefore of some interest. For example, in [2] Gelfand, Frolov, 
and Cencov evaluated function integrals by a Monte Carlo method after replacing 
the integral by an iterated Riemann integral of many hundredfold order. 

In Section 2 we state several known properties of the Wiener integral which are 
required in the sequel. In Section 3 we formulate the problem for quadrature form- 
ulae which are exact for polynomial functionals of degree 2n + 1. We then show in 
Theorem 1 how to reduce the development of these formulae to the case of n = 1. 
In Section 4 we characterize the most general L2 solution for the case n = 1 and 
give three specific examples. The first two examples correspond, respectively, to the 
formulae of Cameron and Vladimirov. In Section 5 we describe the refinement 
procedure for the quadrature formulae which consists of integrating over subspaces. 
We then derive error estimates for the mixed integration procedures. In Section 6 
we give a summary of numerical evaluations of the Wiener integral of two specific 
functionals. We also include for reference a table of constants essential for the 
method developed here. 

2. Some Properties of the Wiener Integral. Let (C, C, w) denote the probability 
space consisting of 

(1) C, the space of real-valued continuous functions x(t) on 0 < t ? 1 with 
x(O) = 0. 

(2) C, the a-field of subsets of C generated by the cylinder sets 

'Yabt = {X E C; -o < ai < x(t) _ bi < ,1 < i < nL 

a = (a,, a2, * an) b = (b1, b2, ,bn) t = (tl ,t2, tn) 

and 
(3) w, Wiener measure.* 
A functional F on C is called a ?monomial of degree m if 

F[x] = x(t,)x(t2) * x(Qm)ium(dti X dt2 X ... X dtn) 

where Im = [0, 1] X [0, 1] X ... X [0, 1](m copies), and um is a regular signed 
measure of finite total variation defined on the Borel sets of I'. A functional F is 
called a polynomnial of degree k if it is a linear combination of monomials of degree 
?k. We shall denote this latter class by G'k 

We now state three known lemmas which describe properties of Wiener in- 
tegrals which will be needed below. Lemmas 1 and 3 give the value of Wiener in- 

* We choose thatWiener measure with of = 2-1/2; see [3] for precise notation and definition. 
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tegrals of functionals of special types, while Lemma 2 is an identity giving the 
Wiener integral in terms of its values over subspaces. 

LEMMA 1 [4, p. 151]. If f: R' -* R' is such that 

I= en(uj , U2, * U)f(2i . ** 2i d 1) du du, 

exists (as a Lebesgue integral), where ii , i2, * ,in are distinct positive integers and 

I = 7r~~-n/2 iU2 U2 + +U2 (2.1) e*(Ul, U2, , Un) = er exp (-(ui2 + U2 + * * + u22)) 

then 

Ithn| F[x]w(dx) 

where 

FIx] = f ai,(t)x(t) dt, f ai2(t)x(t) dt, I.., f ain(t)x(t) dt) 

and 

(2.2) ax,(t) = 21/2 sin (2j - 1)7rt/2. 

LEMMA 2 [1, p. 114]. If F E L1(C, C, w), then 

F[x]w(dx) = f en(u) du f F[x Pn X + In'(u, )]w(dx) 

where 
n1 

(Pn x)() = E aij(t) |aej(s) x () ds, 
j=1 

Xfn(Ut) =n 2 uj aij(t) 
je1 7r 2j - 1 

and en and aj are as in (2.1) and (2.2). 
LEMMA 3 [3, p. 50]. If F[x] = x(tl)x(t2) ... X(tm)(O < ti ? 1,1 ? i ? mn), then 

F[x]w(dx) = Bm(tt, .t2 , tm) 

(2.3) = 0, m odd, 

= 2-m/2 min (til, ti2) min (43, t4) . . . min (timi itim), m even, 

the summation (*) being carried out over all partitions of {1, 2, *.., m} into m/2 

subsets each of size two. 

3. Determination of the Pairs (Vn , Osn) We seek an approximation formula to 
the Wiener integral of the type 

(3.1) f F[x]w(dx) _ f F[n(U, .)]vn(du). 
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Using Lemma 3 above and arguments similar to those used by Cameron [1], 
it may be seen that the requirement that (3.1) be exact for polynomial functionals 
F E P2n+1 is equivalent to the conditions 

(3.2) ] 1111 On(U, t1)Vn(du) Bm(t, X t2 X X tin), 1 ? m ? 2n + 1, 

-1, m=O. 

In this section we will show how to construct pairs (Vn, On) which satisfy the 
integral relations (3.2) in terms of pairs (v, 0) corresponding to n = 1. 

Let X denote a symmetric probability measure on the Borel sets (63 of R1; i.e., 
X(B) = X(-B) where B E B1 and -B = {-b: b E B}. We let M0l] denote the 
a-field of Borel subsets of [0, 1], and suppose p(t, t): R' X IP --- R' satisfies 

(3-3) (i) p is bounded and (B1 X 63t0o,] is measurable; 

(3.4) (ii) pU7, t)-p-i 

(3.5) (iii) f p(t, t)p(t, s)X(di) = 1/2 min (s, t). 

(Here and henceforth we omit the range of integration if it is over the entire space.) 
For k a positive integer, Xk will denote the product measure on the Borel sets 63k of 
Rk' induced by X. 

In what follows n is an arbitrary but fixed positive integer, and vn = Xn. Let 
K' denote the field of complex numbers, and define on: R n X f -* K1 by 

(3.6) 0.(u, t) - cl(n)p(u, , t) + C2(n)p(U2, t) + *** + cn(n)p(un, t) 

where the complex constants {cj(n)} are to be specified. 
THEOREM 1. If the {c2j(n)} are the roots of the polynomial 

n-1 n-2 

(3.7) An(z) =z -n 1 + 2- 
... 

+n I 

then (3.2) holds where (vn , On) is given by (3.3)-(3.6). 
Proof. Part I. Let U be a finite set. By an n-partition of U we shall mean a 

partition of U, { U, , U2 , U,} into r (say) disjoint, nonvoid sets for some r with 
1 ? r ? n. Denote by Hn (U) the family of all n-partitions of U. We say that 
an n-partition { U,, U2, ,*, U,) of U is of type a = (al, a2 .* ) if ai of the sets 

I Uj = have i elements, for each i, 1 < i < oo . An n-partition is of even type a if 

12i~l= 0 (0 ? i < oo ). Let 5n ( U) (resp. 5ne( U) ) denote the totality of possible 
types (resp. even types) of n-partitions of U. Note that a E cn ( U) if and only if 

(i) aj is a nonnegative integer (1 ? j < oo1), 

(ii) al + a2 + <n, 
(iii) ai + 2a2 + * = I U = number of elements in U. 

Let J7n,a (U) denote the family of n-partitions of U of type a. 
We begin our proof by observing that, independent of the choice of the {cj(n)}, 

{*2p+1 

j1 On(U2 ti) Vn(du) = B2p+,(t, , t2 , * t2,+tl) = 0 
jfe 

for all p, O <!5 p < co due to the symmetries of X and p. It thus suffices to choose 
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the { cj(n)} so that 
2p 

JJ O f(U, t)vn(du) = B2p(tl t2* 1 ? p < 2n. 
j=1 

Now, 
2p 

II On(U) tj) 
j=1 

is a linear combination of terms of the form 

(3.8) II (ci,(n)) II p(xik , tj) 
k=l iJE Uk 

with the expression in (3.8) corresponding to the n-partition I U1, U2, , U,} of 
Z2p= {12, ,2p}. If welet 

E( U) = II p(x, t)X (dx), 
jEU 

then the integral of the term in (3.8) with respect to the measure vn is equal to 

(3.9) I (cik(n) ) UkE( Uk). 
k-1 

To evaluate 

r2p 
J1 - O n(U, t;)Pon (du), 

j=l 

we fix a E 35e(Z2p) { U1, U2 , * * Ur7 E j n, (Z2p) and sum (3.9) over all or- 
dered r-tuples (iA, i2 , * , ir). There results 

2p 

(3 ) II On(u t,)vn(du) = , E 

( 3s10 ) j aE n6 ( Z2p) { U 1U2 ** *,U r JE Jn,a(Z2 p) 

{I E(Uj)} {1E II (Cib(n) ) }Uk 
j=l (il,i2,- --,id) k-l 

where the *-summation is carried out over all ordered r-tuples (i1. i2, * ) of 
distinct integers with ii E Zn(l _ j _ n). We note that the right-hand side of 
(3.10) includes the expression 

(3.11) 4 x )1 (cik(n))) 
2 B2p(tl , .. , t2v) 

(i1,i2,-" .ip) k-1) 

which corresponds to the sum 

E {tI~11E(Uj)} E* 11 (Ci (n)) 
2 

1U1,U2,-"-,Up)EllIn,U(Z2p) j-1 (ii2, * *,ip) k nl) 

with a (0, p, 0, 0, *-- ). (3.5) shows that this is the case since for 

a = (hv p two n.t T. ), 

the corresponding sets in the partition have two elements. The proof consists of 
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showing that it is possible to choose the {cj(n)} so that the coefficient of 

B2p (t1 yt2, * t2p) 

in (3.11) is equal to unity, while simultaneously forcing all of the remaining ex- 
pressions in (3.10) to vanish (for each p, 1 < p < n). We introduce the coefficient 
functions Gr(p; VI , V2 , , Vr) defined by 

Gr(p; VI ,V 2 , * vr) = j II (cn,(n))2 
( * .Xi2. ) d =1 

where the { vj are positive integers with sum p. 
LEMMA 4. The family of functions {Gr(p; VI, V2, . * Vr)} satisfies 
(i) Gr(p; VI V2 Vrr) = Gr(p; VO() ) Vo,(2) Vo,(r)) where a- is a permuta- 

tion of Zr, 

Gr(p; VI V2 * Vr) = Gl(vr; vr)Gri(p- Vr VI ,V2, ,Vr-I) 

- V- VGr i(p; ViV2, * * * V7,Vi+1 * Vr-1) 

for r> 1, and 

Gr(p; vI v2, ,Vr) = E Cr(w) 
5E3r( zr) 

(3.12) (iii)s 
T E tI~~~~~G, vj; viX4 

t{Nl.---,Ng]GEI1r,(Zd) k=1 \iENk fENk / 

where 
r 

(3.13) Cr(g) = I {(-1)<'(j- - m 0j. 
j=1 

Proof. Lemma 4 (i) is obvious. To prove Lemma 4 (ii) we need only observe 
that 

r-1 
Gr(p; vI , v2 , * * , tr) = H f (cij(n) )2,j 

X {Gl(vr ; Vr) - (cil(n) )2vr - - (Cr- (n) )2vr}- 

The proof of Lemma 4 (iii) is by induction on r. Certainly, the result holds for 
r 1. Assuming the result for r = t, we then have by Lemma 4 (ii) 

Gt+l(p; vI , V2 * 
V*t+l) 

= Gl(vt+-i; Vt+) 

X C C(- ) Gi C (,)(T v;i ( v Z) 
(3.14) get(zd (Nj, -,NJ}(ETItgZ,w) k=l1 iENk jENk 

_ L 57 Ct() E t G, vj ; 
) 

Vj i) 
i=i gEt(Zt) {N1,i ,N1EIltg (z) k=l jENk jENk 

where 
v~t) =vj if j # i, j E Zt 

=vi+ Vt+, if j -i. 

Take r (71 , 72 Yt+l . ) E 5t+i(Zt+i); then (3.12) implies the recurrence 
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formula 

Ct+l(y) = C&((71 - 1 -72, 'Yt * - - )) if 'y1 1, 

(3.15) ( - 1) Ctg((O,) 0 , 0, 1, Y - 1, Yj+1 ... Yt+i ) 

ifforsomej, (2 ? j ? t + 1) wehave yj = 0 (1 < i < j) andyjy;' 0. 

Finally, (3.15) yields (3.12)-(3.13) for = t + 1. Note that Ct(y) # 0. 
Proof. Part II. By virtue of (3.10)-(3.11) it suffices to choose the tcj(n)1 so 

that 

Gr(p; V1 V2, ) Vr) 

(3.16) =1 if p =r and v1= v2 *- =-Vr 1, 
1?p n. 

= 0 otherwise, 

We assert that in order for (3.16) to hold it sufficest to require 

(3.17) Gl(p; p) = 1 if p = 1, 

= 0 if 1 < p < n, 

For (3.17) implies that whenever (N1, N2, , Nj} C f1r,,(Zr),( E 3(Zr)) 
then 

HG1 Z Evj; Evj) =0 if forany k (1 _ k _ s) vj >i 
k=l jENk jENk jiENk 

= 1 ifforeveryk(1 < k ? s) Z Vj = 1 
- jNk 

which yields (3.16) by (3.12)-(3.13). Set dj(n) = c (n) and let 
n n 

(3.18) An(z) = II (z - dj(n)) = Zzn k(1)k ok(n). 
- k=l k=O 

It is known [6, p. 81] that 
p-1 

Gi(p -j; p -j)(-1)jo-j(n) + (-1)Ppop(n) = 0 1 ? p ? n 
j-0 

which completes the proof of Theorem 1 by virtue of (3.17). 
Remark. We assumed in (3.3) that p is bounded. This requirement was made 

for purely technical reasons. Our conclusions are valid under the weaker condition 
m 

H P((-, ti) E L1(Rl G31, X), 1 < m < 2n + 1. 
j=l 

4. The Solutions of fp(Q, t)p(Q, s)X(di) = min (s, t). In Section 3 we reduced 
the problem of determining quadrature formulas to finding a solution pair of the 
integral relation (3.2) for the case n = 1. We will solve this problem by determining 
the solutions of 

)x 

(4.1) p(x, t)p(x, s)x(dx) =2min (s, t) 
00 

t -This condition is actually necessary and sufficient, but we only require its sufficiency. 
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subject to the conditions 

(4.2) X is a symmetric probability measure on M', 

(4.3) p(x, t) = -p(-x, t)(X a.e.), 

(4.4) p e L2(R' X IP; (' X (B(oj] ; X X j) 

where 1A denotes Lebesgue measure. 
Note that it suffices to determine the solutions of 

(4.1') f p(x, t)p(x, s)5(dx) = X min (s, t) 

subject to the conditions 

(4.2') X is a measure on the Borel sets 63+' of R+' = [0, oo), (R+') -2, 

(4.4') p E L (R+' X IP; (B+' X (Bioj]; A X A). 

The solutions of (4.1)-(4.4) are then obtained by taking X to be the even extension 
of X to (B' and p the odd extension (in x) of p to R' X IP. 

THEOREM 2. The solutions of (4.1'), (4.2'), and (4.4') are given by 

(4.5) A(x, ) O E 'Oj(t)*k(X) 
j,k-1 

where 
(i) the {10jt satisfy f 4 min (s, t)ckj(t) dt = M,4j(s), where 

/2j !(21 _ ) 2 (1 < i < oo) and fjo 2(t) dt = 1; 

(ii) {'k} is any complete orthonormal set in L2(R+1, +1, 1); and 
(iii) (aj, , a) 1 aka,, = J.2 X 

where b31 h is the usual Kronecker delta. 
Proof. It is known that 

(4.6) 4 min (s, t) = ,4,(s)4j(t). 
j=1 

Expanding p in its Fourier series (4.5), we substitute into (4.1') and use Parseval's 
theorem and (4.6) to infer that 

(a,, , a,,) = Ahl-h 
Since 

00 

our conclusion is obtained. 
Example 1 (Cameron). Let X be Lebesgue measure on [-2,2] and 

p(ut) = 1/A/2 if 0 < u < and 2u : t < 1 

- p(-, t) if - < u < O and -2u < t < 1 

= 0 otherwise. 
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Example 2 (Vladimirov). Let X be the measure on OB' determined by 

- XI(- ,X] = E Xk 
-oo<k<oO;kIc5x 

where 

Xk = 2 2 if 1 < k < oo ( 2k - 1 
( 2 )r 

=X-k if- oo <k -1 

= X0 c [0,1) if k = 0 

and 

p(k,t) = P2{1 _0} sin (2k -1) t if 1 ? k < oo 

= -p(- k,t) if - o < k ? - 

=0 if k =0. 

Example 3. Starting from the formula 

- 
sin mx 

dx = sgn m, 
7r coX X 

we observe 

1 1 -COSAx 1-cos Bxdx= min (AB) if AB_>0 
7r Jo x x 

We now define the pair ( (r), p(r)) for 0 < r < o by 

XW (B) = L 3u du + f 2r + 1 du 
n 1-1,11 Bfl -1,1] c 4 U 12 

2 

(u t) = (-) tu if 0 < u ?1 

= ((2r + 1)r) I(1 - cos tu) if 1 < u < 
00 

- -p (-u, t) if - < U < 0. 

Let VUn denote the total variation of On with respect to t on 0 _ t < 1. Then, 

Example 1 Example 2 Example 3 

On 
G LOO(R' X I') E Lo (RI X II) E L2+(l"r)-1(Rl >K I) for all vq > 0 

L2+(l/r)(R] X IN) 

VO~n E L-0(R1; Vn) f LI(RI; vn) E Ll+(r/r+l)-i(Rl; Pn(r)) for all 7 > 0 
t r l+(r/ral)Rl Vn1 .(r) 
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5. The Error Estimate. Suppose ?k41 is a quadrature formula for the Riemann 
integral fa f(x) dx chosen so that ?k[ab] (f) = fa f (x) dx whenever f is a poly- 
nomial of degree k. In order to improve the accuracy of such a formula the interval 
of integration [a, b] is partitioned into subintervals { l '=i and the formula applied 
within each subinterval; i.e., we approximate 

b 

f(x) dx 

by 

Under suitable conditions the error 

m ~~~~~b 
8(f) - E i(f f(x) dx 

i= ) - 

is O(Aek)) as A = max I Ai 0, the exponent e(k) being characteristic of the 
quadrature formula ?kla'b]. The subdivision of the range of integration is also at 
our disposal in the Wiener integral. The form it takes is given by Cameron's Mixed 
Integration Theorem (Lemma 2). The exponent e(k), as we shall see, is dependent 
upon the integrability of Vtan . 

Let C* denote the family of functions on [0, 1] of the form 

x(*) + (I - Pm) On(u *) 

where x CC 1 < m < oo and u E R'. 
THEOREM-3. Let F E LV(C, e, w) admit an extension to C* which we continue to 

denote by F. Suppose 

2n+1 A 

F[xo + x] = F[xo] + 2f f I x(tk)uj,,0(dt, X ... X dtj) 
(5.1) j=1 k=1 

+ (R(xo; x)xo , x E C 

where 
(i) Aj,2 is a regular signed measure of finite total variation, jj fl, with 

(5.2) Alx III C L'(Cj , w), 

I n+1 

I R(n(Xo ; X) I {f I x(s) 12 dsf 

(5.3) (ii) X {A, exp B 4 | x(s) + xo(s) 2 ds + A2 exp B 4 xo(s) I2 d 

xOx E C;0 < B < 7r2/4, 

and such that 
(iii) equations (5.1)-(5.3) continue to hold for xo E C and x* e C*. 
Then, if 06, is bounded, we have, as m -* 
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8m,n(F) = L ern,(y) dy F[(I -PPm)x + Im(y, *)]w(dx) 

L em(y) dyf F[(I - PnJ)On(u, *) + ''(y, *)h'(du) 

[O(1) if VUOn LP(JP, G8,vn) for any p > 1 

(5.4) o (m7') if O?n E LP (R, (?n, Pn) for some p, 

=j 1 < p < 2n +2 

where 71 = [2] + (p 2 [2] f 
tm-(n+l)) ifV 2(n+D)R (2n v) 10 (M if V O E L 63, vn, P 

where 
(i) ''m(y, t) = E7= (2/r)(yj/(2j - 1) )-V2 sin (2j - 1)irt/2, 

(ii) [*] is the "integer part of *", and 
(iii) a+ = max (a, 0). 
Proof. We have 

F8m,n(F) = g8 n,l(F) - gm,n,2(F) = L em(y) dy f sn(*.J'(Y, ); (I - Pm)X)W(dX) 

- Lm e~, (y) dy C1Rn(*Jm(y* ); (I -Pm)On( u, ) )vn(du) 
Rm R~~~n 

by virtue of the construction of the pair (V2n O n) and the fact that 
2n+1 j 

f JI ((I -Prn)x)(tk)/Ij,*m(y,,)(dtl X ... X dtj) 
j=l k=l 

is an element of !P2n+1. We shall estimate 8m,nj(F) and 8m,n,2(F) separately. Since 

f ((I-Pm)X(5))2 ds = E x(s)aj(s) ds}, 0 ~~~~~~j>n T 0 
we have, by Lemma 1, 

((I -Ptr )X(S))2 ds} w(dx) =Om 

as m o . Since 

exp B f J ''n(y, s) + ((I - Pmn)x(s)) I2 ds 

exp B f4f 2(y s) ds-exp B W((I -Pm)X(S))2 ds 

< exp B f 2(y, s) ds exp B x 2(5) ds, 

we have, by Holder's inequality, 
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{f - ( P)x ( P ))2dS} ns} 

(5.5) X {exp B *f; 'I'm(y, s) + ((I-Pm)X(S) 12ds1 w(dx) 

= exp B f 'I'm2(Y, s) ds X 0(m-(') 

Finally, 

L em (y) {exp B f 'ii2(y, s) ds} dy (sec (B"12))"12 as in> x , 

which, with (5.5), shows that 

(5.6) gmnl(F) = O(m-(n+l)) as m x . 

In estimating the rate at which &m,n,2(F) -- 0, we no longer have Lemma 1 at our 
disposal. Let us assume that f~n E L2r+l+E(Rn, G3b, vn) where r is an integer, 0 ? r ? 

n and 0 < e < 1. We have 

fo| (I - Pm)On(U, s) 12 ds = 
4 

2 | (s)67(US 

-= 2 ( cos (2j- 1) 2sd8 On(U, S) 
j>mn7r (2j l 1)w/22 

I ()O) (U) 12 O(m-i) 

which yields 

(5.8) {f Pm) O(U, s) 2 ds} =I )(U) j2 O(mr). 

On the other hand, 

p1 jU2s2 ds ?Z! 4 2 1+e 

fU (I - |m)O(U) ,j>m 7r2 (2j- 1)4r/ 2 

(5.9) x VnUj? fe us( ds (~~~~~~~~~~ I (coon) ( U) |1+ [On ( U20S%63( ) ds| 

= |(vO)(U) j1+| o(mE). 

Taken together, (5.8) and (5.9) imply 

1 (n+l) 
I (I - Pm)On(U s) 12 ds} vn(du) 

(5.10) 
f (vOn)(u) 12r+1+e o(m-(r+e))vn(du). 

We again note that 
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exp B j ]'m(y, s) + (I- P.)n(u, s) I2 ds 

1~~~~~~~~~~~~S 12 
= exp B fI'm2(y, s) ds expB II (I -Pm)Gn(us) j2ds 

(5.11) 
< exp B f 'rm2(y, s) ds exp B f MA(u, s) I2 ds 

? D exp f ??I 2(y, s) ds 

since fi is bounded. Equations (5.10) and (5.11) together yield 

(5.12) &~m,n,2(F) -o(m- ) 

with i1-r + E, and hence, &mn(F) = o(m-). If ACOn E L2(n+l)(Rn, 6(, vn), then 

we may take r = n + 1 in (5.8) and replace -q in (5.12) by n + 1 and "o" by 
"O". Finally, if VUf~n E L'(R n, 6(,U vn) for any p > 1, then Parseval's theorem, 
applied to the left member of (5.10), yields &m,n,2(F) -o(l), and hence, &m,n(F) 

o(M). 

6. Numerical Results. In this section we will give a summary of the results of 
numerical experiments performed with certain of the formulas derived above. 
We evaluate the functionals by a variety of formulas. In most cases our formulas 
reduce to evaluating finite-fold integrals. We do this by Monte Carlo. The slowness 
of the convergence of the Monte Carlo method for integrals of large multiplicity is 
the limiting factor in accuracy of our results. We conclude this section with a table 
of the coefficients cj(n) needed in our methods. 

The mixed integration formula developed in Section 5 is 

(6.1) f F[x] d4 x = Lem(y) dy f F[(I - Pm)X + *'Im(Y, )]w(dx). 

We will first apply this formula to integrate the functional exp 11 x 112 It is known 
that to five figures 

(6.2) fexp x2(t) dtw(dx) = 1.3605. 

We first use the approximation formulas corresponding to the Cameron type (Ex- 

TABLE I (Eq. (6.3)) 

n 

2 3 4 I 5 6 

3 1.35 1.31 1.41 1.41 
4 1.34 1.34 1.36 1.36 1.31 

10 1.39 1.34 1.39 1.43 1.38 
20 1.30 1.35 1 1.39 [ 1.36 1.31 
30 1.39 1.31 1.33 1.38 1.40 
40 1.40 1.36 1.30 
50 1.33 1.32 
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ample 1 in Section 4) in the right member of (6.1). With F[x] = x 12 this becomes 

f e,,.(y) ly exp [ (2j 

n \2 

(6.3) 
X ( cl(n) sgn ui cos {(2j- 1)rul}) 

1=1 /= 

+ 72ZE(42j_1)2Yi] dul *dunw. 
Here and hereafter, n is the parameter describing the degree of exactness of the 
approximation formula. 

The integration dy in (6.3) may be performed to yield 

LI ( 2(2j - 1)2 ~ ..." exp iT2 * 
(6.4-) 1/2 1/2 L[r l jm+ (2j - 1)2 

X __ cl(n) sgn u, cos {(2j - 1)rul})] du1 ... dun. 

The rn + n-fold integral in (6.3) and the rn-fold integral in (6.4) were evalu- 
ated by a Monte Carlo method. The results are given in Tables I and II below. 
In these tables we see that the results are in rather good agreement with the exact 
answer 1.3605. Indeed, the error is at most 5% in Table I while it is at most 0.22% 
in Table II. In Table II we see that the results are invariant with increasing n 
but improve as expected with increasing m. On the other hand, Table I shows in- 

TABLE II (Eq. (6.4)) 

in 

2 3 4 5 

3 1.3567 1.3554 1.3571 1.3554 
4 1.3570 1.3572 1.3567 1.3573 

10 1.3576 1.3578 1.3579 1.3576 
20 1.3585 1.3586 1.3585 1.3585 
30 1.3589 1.3589 1.3589 
40 1.3592 1.3592 1.3592 
50 1.3594 1.3593 

TABLE III (Eq. (6.5)) (n 2) 

3 1.3264 
4 1.3263 

10 1.3263 
20 1.3270 
30 1.3308 
40 1.3314 
50 1.3317 
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sensitivity to both rn and n. Unfortunately, the quality of our results is limited by 
the necessity to- use M\Ionte Carlo methods for evaluating mi' + n- or n-fold in- 
tegrals. Tables I and II represent calculations which sample the integrands in (6.3) 
and (6.4) at 300 points. In Table II the relatively small multiplicity of integration 
enabled 300 samplings to produce excellent results. In Table I the I\[onte Carlo 
method needs very many more iterations before an accurate test of the quality of 
the methods can be made. Note, however, that the rows m = 3 and mn = 4 in 
Table I (small multiplicity of integration) show the right relative behavior. 

We next consider the approximation formula of the Vladimirov type (Example 
2 in Section 4) applied to the right member of (6.1) with F[x] = exp HI x 112. In this 
case all integrations may be performed, and we get for the approximation 

2-m 17 [(2j - 1)2ir2 - 4] E k Z Xk1 
j=1 kj-..k, 

n 

(6.5) X exp E Ca(fn)C6(n)6jkIblkaj 
-2 a,#=l 

X sgn (ka k,6) 1- 6Ikj)( 6k1, 0 

This expression was evaluated for n = 2 and several values of me. The results are 
given in Table III. The results have the proper behavior relative to mn, and we see 
that, as expected, they are less accurate than those in Table II. 

Now we consider the Wiener integral 

(6.6) f exp-(f V(x(r)) dr) w(dx) 

TABLE IV 

in 
2 3 4 5 

3 .64 .64 .66 .66 
4 .65 .66 .67 .64 
5 .66 .62 .64 .69 

10 .64 .65 .65 .64 
20 .65 .66 .65 .65 

.67 - .65 ~ ~ ~ ~ ~ ~ ~ ~ .6 6 

.64 EXACT-/ 
.63 - ANSWER 

500 1000 1500 2000 
NUMBER OF SAMPLINGS 

FIG. 1 
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where 

V q) =1 > O 
(6.7) 

=0 t<0. 

This integral is the expected value of the fundamental solution at t = 1 of the 
partial differential equation 

(6.8) Ot = 2 0U - V(x)U. 

TABLE V 

C1(2) = .77688698 - .32179713i 
C2(2) = .77688698 + .32179713i 

C1(3) = .79154171 
C2(3) = .59266106 + .40560610i 
C3(3) = .59266106 - .40560610i 

C1(4) = .69700524 + .16865045i 
C2(4) = .69700524 - .16865045i 
C3(4) = .46880439 + .42089298i 
C4(4) = .46880439 - .42089298i 

C1(5) = .67719117 
C2(5) = .59917088 + .25286159i 
C3(5) = .59917088 - .25286159i 
C4(5) = .38364247 + .41418658i 
c5(5) = .38364247 - .41418658i 

c1(6) = .62251030 + .10720664i 
C2(6) = .62251030 - .10720664i 
C3(6) = .51649093 + .29438975i 
C4(6) = .51649093 - .29438975i 
c5(6) = .32260387 + .40024508i 
C6(6) = .32260387 - .40024508i 

C1(7) = .60203804 
C2(7) = .44947612 + .31376828i 
C3(7) = .44947612 - .31376828i 
C4(7) = .56252567 + .17408303i 
c5(7) = .56252567 - .17408303i 
C6(7) = .27715672 + .38438162i 
C7 (7) = .27715672 - .38438162i 

C1(8) = .24221770 + .36859030i 
C2(8) = .24221770 - .36859030i 
C3(8) = .50659500 + .21566945i 
C4(8) = .50659500 . 21566945i 
C5(8) = .56540275 + .07574939i 
C6(8) = .56540275 - .07574939i 
C7(8) = .39536845 + .32123876i 
Cs (8) = .39536845 - .32123876i 
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The exact value of this integral is known to be 

(6.9) 2 f exp (-cos2 0) dO = 0.6450. 

We use the mixed integration formula (6.1) and the approximations of the Cam- 
eron type. This leads to an in + n-fold integral which we do not reproduce here. 
This latter integral is evaluated by Monte Carlo. The result of sampling the in- 
tegrand at 200 points is given in Table IV. The results in Table IV, with one ex- 
ception, are within 4% of the exact answer. The deficiencies of Monte Carlo do not 
allow us to see the correct behavior of the results as in and n vary. To show the 
influence of the Monte Carlo method we ran the case in = 5, n = 2 in Table IV 
for 2000 samplings of the integrand. The final result for the integral was 0.652. In 
Fig. 1 we reproduce a running account of this Monte Carlo calculation. 

The integration formulas which we have derived require that x(t) be replaced 
by a complex-valued expression since the cj(n) are complex-valued. If F[x] is 
given, a priori, for real x only as in (6.6) and (6.7), an appropriate complex ex- 
tension must be chosen before our methods may be applied. In the function (6.7) 
we use as a complex extension 

V( ) = 1 Re > 0, 
(6.10) 

= 0 Re < 0. 

The method of prescribing a complex extension is not well defined. This matter 
remains an open question which we hope to look into. 

Finally, we include in Table V a list of values of the coefficients cj(n) needed 
in our methods. 
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