Quadratures with Remainders of Minimum
Norm. I *

By R. E. Barnhill and J. A. Wixom

1. Introduction. One approach to the problem of numerical integration on con-
tours in the complex plane was discussed in a previous paper [1]. This paper is an
application of that work to the quadrature problem f Lif(z) = X pi Af(z). For
a fixed n, {A,}7=1 and {2} 7~ form a set of 2n variables. Let R,.(f) = [ f(2) dz —
Z;Ll Axf(2r). Then R, is a linear functional defined on a certain function space
X. In the cases to be discussed, X is a Hilbert space. Suppose that {Pn}.— is a
closed set of functions in X. Many of the standard quadrature methods amount
to specifying certain side conditions and, subject to these, choosing the A; and z;
so that R, (0) = {f € X:R,(f) = 0} contains a maximal number of the P, . If
Po, Py, ---, P, arein R, '(0) and P,y is not in R, (0), then the quadrature is
said to have precision s. Thus, for example, if X = Cla,b] and P,(zx) = 2™,
m = 0, 1, ---, and the side conditions are that the 2, are specified beforehand,
then choosing the A, so that R, "(0) contains a maximal number of the P.,.(z)
amounts to the usual interpolatory quadrature procedure.

The procedure used in this paper is to minimize the norm of a certain error
functional related to R, . Specifically, suppose that R.(f) = R,*(f”), where f(z)
denotes the rth derivative of f, and R,* is a linear functional defined on the space
of rth derivatives of functions in X. Then | R,(f) | = | R.* (") | < | R.* |11 77 |,
and the problem is that of minimizing || R, || by an appropriate choice of the A
and z; . It has been shown [1] that minimizing with respect to the A, (for fixed z;)
yields systems of linear equations to be solved; minimizing with respect to the z
yields systems of nonlinear equations. In this paper, the 2. are assumed given
beforehand and only the A, are treated as variables. In a later paper, both the
linear and nonlinear cases will be considered.

2. The Equations to be Solved. In this paper we consider three sets of quadra-
tures. For the first two sets, the space X is L*(E,), the L’ completion of H(E,),
where H(E,) = {f: f is analytic on the ellipse I/, with semimajor axis a, semiminor
axis b = (&> — 1) and p = (a + 1)} [2]. The “double integral norm” is ob-
tained from the inner product

(f,9) = ffE 1(2)g(z) dxdy.

For the first set of quadratures, { P, (2)}m—o is defined by
Pm(Z) — 2(‘”1/ + 1)1/2 [ﬂ_(pm+1 _ p—m-—l)]—-ll‘ZUm(z),
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where Un(2) = (1 — 22)sin[(m + 1) arc cos (2)],m = 0, 1, --- . In fact,
the set {Pn(2)}meo forms a closed orthonormal set in L*(E,). No polynomial pre-
cision requirements are imposed for this set of quadratures so that R, = R,* and
| Ro P = Dom=o| Ra(Pn) | If the 2z are given in [—1, 1], then the A, are real
and denoted by ai . The resulting linear system of equations in the variables a;
is as follows:

0

(1) ]Z:; a; I:g;o a(m, P)Um(zJ')Um(zk)] =2 a(m, p)y(m)Un(z), k=1, -+ m,

m=0
where a(m, p) = 4(m + D)x(o™ — p ™ )], and
'Y(m) = (m + 1)_1[1 + (_1)7"]’ m = Oy ly R

In matrix notation, (1) can be written as Ta = h, where T = (), ti =
E:=0a(m; p)Um(Zj)(/m(Zk), a = (al, e ya'n)Ty and h = (hlyh2 y T hn)T
where hi = D _m—oa(m, p)y(m) Un(z).

For the second set of quadratures, {P.(z)}meo is defined by P, (z) =
2(m 4+ D)™[r(o™" — p "] ?Un(2), where Un(2) is as above. For this set,
precision is required for constant functions so that || R.* | = Do | Ra(Qm) |,
where Qn(2) = P, (z). Assuming that the z, are given in [—1, 1], the resulting
system of equations to be solved is the following:

) 2 01[2 5 alm, ) sl Tustar) | = 2 5, alm, 9)8m) Tasa(a) — s,
‘ k=1 --,n

where \; is a parameter, Tn1(2) = cos[(m 4 1) arccos (2)], the (m + 1)st
Tchebycheff polynomial of the first kind, a; and a(m, p) are as above, and 8(0) = 0,
B(m) =1 — (m+ DI+ (=1)""],m = 1,2, --- . The system of equations
(2) can be written in matrix form as Ta = h — A, where

T = (tjk)7
L = 220 a(m, p)Tmii(2;) Tmsa(2e),
a=(a17”')an)T>

h = (hly"' ,hn)T’

he = 2200!(7”, p)B(m) T'mia(2r),
and
A=\, A, o, A7

In the third set of quadratures, the space X is the L’ completion of H([—1, 1]),
where H([—1, 1]) = {f: f is analytic on [—1, 1]}. The “line integral norm” is ob-
tained from the inner product

o) = [ (1= )T e,
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where | dz | denotes arc length. The L* completion of H([—1, 1]) is with respect
to the norm induced by this inner product. The Tchebycheff polynomials of the
second kind form a closed orthogonal set in this space. Precision is required for
constant functions so that R.(f) = R,*(f') where ' is the derivative of f. This is
the case r = 1 in Section 1. The resulting system of linear equations to be solved
is the following:

> [2 > a<m>Tm+l<z,->T,,.+1<zk>] =23 5(m)B(m) Twir(zs) — M,
(3) j= m=0 m=0
k=1,---,m,

where B(m) and Tn4i(z) are defined above, §(m) = (m + D7 A(m)),
Am) = 2:1:3:5--- (2m + 1)/2-4 --- (2m + 2), and A\, is a parameter. As
before, system (3) can be written in matrix form as Ta = A — ;.

3. Description of the Computations. The elements of the matrix T and the
vector h are infinite sums and hence must be approximated by finite sums. The
approximating finite sums were obtained by fixing a positive integer ¥ and summing
the series until N consecutive partial sums were identical within the double preci-
sion range of the computer (16 digits). For the double integral norm, N was fixed
at 25, and the number of terms in the approximating series varied from 1050 to 35
as a varied from 1.0001 to 5.0. For the line integral norm, N was fixed at 500 and
the number of terms in the approximating series averaged about 350,000. The slow
rate of convergence of the series for the line integral norm made it impractical to
calculate 7 using more than ten abscissas. Using the IBM 7044 it requires approxi-
mately 9 hours to compute and sum 10,000 terms of the series in the matrix 7' for
the 16 Gauss abscissas.

A direct method was used to calculate T~'. Then Newton’s Method was used to
improve the caleulated T, If D is the approximation to 7', calculated by a
direct method, then D; = Do(2I — TDy) is the first iterate, with error measured
by E1 = I — TD;. The iteration was terminated after m steps when all the ele-
ments of K, were less than 107" in absolute value.

Ifor the double integral norm calculations, the matrix 7' becomes unstable with
increasing values of a. For example, the determinant of 7', using Gauss 7 point
abscissas and @ = 1.75, becomes smaller than 1077,

For this reason we were unable to obtain values for the quadrature weights and
remainders with predictable reliability for some sets of base points for relatively
large values of a. Hence, these are omitted from the following tables.

The linear system of equations is solved by the Gauss-Seidel method [4]. Since
T is real, positive definite, symmetric and has positive diagonal terms, the Gauss-
Seidel method is known to converge.

The approximations to || R,* || and || R, || were calculated in the same manner
as the approximations to the elements of the matrix 7'. Lee, Sun, and Lo [5] have
calculated || R, || using known quadrature weights and we have verified their results
as a check on our calculations.

4. Tables. The following set of tables (tables 1-5) lists the quadrature weights
and the norms of the remainders that were calculated using known abscissas. These
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TABLE §

Line Integral Norm—Precision for Constants

Abscissas

Weights

[Ra*]

Trapezoid

Simpson

Weddle

1.00000000000

0.34166233122
1.31667533756

0.11442868201

1.0650733423
0.3225321140

0.0681382406

0.40254092837
0.31437632017
0.33730813889

Gauss 2 pt. 1.00000000000 0.2550563770

Gauss 3 pt 0.56573797607 0.1498311203
0.86852404786

Gauss 4 pt 0.35402340648 0.1020021252
0.64597659352

Gauss 5 pt 0.24103044858 0.0752714571
0.47512812123
0.56768286040

Gauss 7 pt 0.13156595754 0.0471841912
0.27822895864
0.38147838891
0.41745338982

Gauss 10 pt 0.06074063246 0.3475518407
0.28496489128
—0.48032018629
1.60088303881
—0.46626837611

quantities were calculated for 22 values of a ranging from 1.0001 to 5.0 for abscissas
corresponding to the following quadrature rules: trapezoid, Simpson, Gauss 2, 3,
4,5,7,10, and 16 point rules, and Weddle. For the trapezoidal rule and the Gauss
2-point rule, the weights are 1.0. The quantities in the above list that are not in
the tables in this paper are in the Unpublished Mathematical Tables File.

The quadrature weights are labeled from left to right on [—1, 1]. Since sym-
metric abscissas yield symmetric weights, the duplications are omitted from the
tables. The numbers are expressed as floating point decimals with the number in
parentheses being the power of ten.

5. Examples and Use of Tables. The table following the examples (table 6)
gives comparisons, for specific functions, of our quadratures with various known
quadratures. For the examples given, the same abscissas were used for both the
known quadratures and our quadratures. The numbers in parenthesis under the
double integral norms indicate the values of a from which the quadrature weights
were computed.

As a specific example for using the minimum norm remainders listed in the
previous tables, consider the function f(z) = &

(a) Double integral norm—no polynomial precision:

| R.(f) | S | Ra\|- || S|, where || R, || is tabulated in the tables and
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Il = { J[ 1iere dxdy}w < M{ I p dxdy}m = M(xab)™",

where M = MaX;e s, | f(2) |
TForf(z) = ¢, M = maxzeEp || = MaX.cg, | € | = ¢
Therefore, |R (=R, |- - (rab)? = | R, ||-€"[ra(a® — 1)
The following minimum values of || R, ||-¢* (wab)"* are obtained for the indi-
cated abscissas from the values of a used in the preceding tables.

IA

22—y2

Abscissas a | R ||- € [ra(a® — 1)"4"
Gauss 2 pt. 1.50 1.26992
Simpson 1.50 1.87016
Gauss 4 pt. 2.00 0.01290
Gauss 7 pt. 2.00 0.63077 X 10~°
Gauss 10 pt. 1.50 0.58202 X 10~°

(b) Double integral norm—precision for constants:
| R.(f) | < || R.* -]l f ||, where || R.* | is tabulated and

1/2
170 =4[ 17 ey} s Gran,

where M’ = MaXc z, |jJ(z) . B
Forf(z) =¢€ ,M = MaXcx, | 22¢” | = max, ez,,2(90 + )
M = 2a¢”, and || || £ 2a¢" *( ab)”2

|R.(f) | < || R.*||-2a¢" [ra(a® — 1),

The following minimum values of || R,* ||-2a¢* [ra(a’® — 1)"*]'* are obtained
for the indicated abscissas from the values of a used in the precedmg tables.

1/2 22—
126>~ therefore,

Abscissas a | R.*||-20¢” [ra(a® — 1)"4"
Gauss 3 pt. 1.75 0.13611

Simpson 1.30 1.51852 ’

Gauss 5 pt. 2.00 0.73809 X 10~°
Weddle 2.00 0.12802 X 107"

(¢) Line integral norm—precision for constants:
|R.(f) | £ || R |-l £ ||, where || R,* || is tabulated and

1 1/2
i ={[,a =@ el

where | dz | is arc length.

- 1 1/2 1 1/2
1 ={[ a=amir@n e} ={[ -

for the contour [—1, 1]. If we let M = maxq¢_1y [(1 — )| f (2) |, then

1 1/2
170 s va{[Lasf = vaur,
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For f(2) =
I £(2) |

2 1/2
{ 1;2)1/2 | 226" l2| dz l}

{.[ (1 — %)% x} * < 24/65 /2 = 2e4/2.

Therefore,

| Ra(f)] < || Ra" ||-2ev/2.
The following values for || R,* || 2e/2 are obtained for the indicated abscissas.

Abscissa | R.* || 2en/2
Simpson 2.47978
Weddle 0.52388
Gauss 3 pt. 1.15197
Gauss 5 pt. 0.57872
Gauss 7 pt. 0.36277

6. Conclusions. It appears as if the double integral norm quadratures with no
polynomial precision will be the most practical of the three sets of quadratures.
The line integral norm quadratures involved series which converge very slowly, as
noted in Section 3. Hence these quadratures would probably be too expensive to
compute for most practical purposes.

For the examples calculated, the results of using the double integral norm
quadratures with precision for constants did not seem significantly different from
the results obtained using Gaussian quadratures. However, most of these com-
parisons were made using Gaussian abscissas and hence the Gaussian quadratures
probably appear better than they might if compared with quadratures involving
other abscissas.

It might be noted that if the 2, are given, but are complex, then the system of
equations to be solved doubles in size. Also, as mentioned above, it is planned to
treat the z; as variables as well as the A, .
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