
Some Factorizations of 2n-41 and Related Results 

By John Brillhart* and J. L. Selfridge* 

1. Introduction. In this paper we present a collection of complete factorizations 
obtained over the past year and a half on the IBM 7090-94 at the UCLA Com- 
puting Facility and the Computer Center at the University of California, Berkeley. 

The numbers given here are generally of the three forms: 2n ? 1, 22' ? 2n + 1, 
and 22n+1 :IZ 2n+1 + 1, the latter trinomials occurring naturally in 2 =F 1 = 

(2n =F 1)(22n -t 2n + 1) and the Aurifeuillian factorization 24n+2 + 1 = 

(22+1 - 2n+ + 1) (22+ + 2n+1 + 1). As is customary, we have not removed 
those algebraic factors of 28 - 1 which would produce a quotient more compli- 
cated than a trinomial. (As usual, a prime factor of 2n _ 1 is called "algebraic" 
if it divides 2k - 1 for some k < n. Otherwise it is called "primitive".) To distin- 
guish the remaining algebraic factors from the primitive factors, we have given 
the latter in boldface. 

The numbers we have investigated were chosen with an eye to their size, since 
in general nothing but frustration can be expected to come from an attack on a 
number of 25 or more digits, even with the speeds available in modern computers. 
In view of this, factorization (15) is somewhat remarkable. 

In the eight factorizations (2), (6), (7), (15), (25), (36), (37), and (39), the 
new factors were discovered by expressing the composite cofactors as a difference 
of squares (by "cofactor" we mean the quotient that remains when the known 
factors are removed). By this means the cofactors were split into pieces that could 
be identified as primes by either searching for factors up to their square roots, or 
by testing them for primality. (This method was also used to produce the auxiliary 
factorizations in (29) and (33).) A brief discussion of the difference of squares 
method will be given in Section 2. 

In the remaining factorizations the completeness was shown by testing their 
cofactors for primality. The primality tests which were used will be discussed in 
Section 3. 

The paper concludes with a collection of results, which include among others 
the current status of the numbers (101 - 1)/9, p prime, of the "original" Mersenne 
numbers, and of the complete factorizations of 2n ? 1. 

2. Factorization by a Difference of Squares. (a) The problem of finding factors 
of a number N = 2k + 1 is solved if we can express N as X y2 in a nontrivial 
way (by trivial we mean 2k + 1 = (k + 1)2 - k2). The seven factorizations in 
(2), (6), (7), (15), (29), (37), and (39) were obtained in this way by means of 
a computer program written by the first author. 

This program is based on the familiar exclusion method of Gauss (see Uspensky 
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and Heaslet [20], Kraitchik [6]) in which the Diophantine equation 

(A) AT=2 Y 

is effectively replaced by the combinatorial problem of solving the set of simul- 
2 2 taneous congruences y2 x - N (mod E) with various "exclusion" moduli E. 

The requirement that x2 - N be a quadratic residue for each E places a strong 
restriction on the values of x. In fact, since each congruence is solvable for only 
about half of the E values of x for each E, only one x value in 28 will generally 
survive the exclusion when s moduli are used. 

By experiment it has been found for the IBM 7090 that 21 or 22 moduli are 
sufficient to sieve out all but a small number of x values, each of which must then 
be tried in (A). The speed of the sieving program is approximately 150,000 values 
per second, which is achieved by using 10 or 11 double moduli (such as E = 17 .83) 
and by operating only at the word level. The method itself is most successful when 
N can be split into two factors that are close together, as in the auxiliary factori- 
zation in (29), where the factors 1061802263 and 1071160627 were discovered in 
less than a second! 

The three factorizations in (25), (33), and (36) were obtained on the new 
delay-line sieve of D. H. Lehmer at the University of California, Berkeley. This 
electronic sieve, which became operative on December 1, 1965, is the most recent 
in a series of remarkable sieving machines that have been built by Professor Leh- 
mer and his associates over the last 40 years (see Lehmer [7j, [8], [9], and D. N. 
Lehmer [16]). The speed of the sieve is 106 values per second, a factor of 7 over the 
speed of the sieving program on the 7090. 

(b) When N has a special form, it is often possible to develop modular restric- 
tions on x or y which limit them to a single residue class. These restrictions, when 
they are introduced as a change of variable, considerably reduce the magnitude of 
the problem when the sieving is carried out on the new variable. For instance, if 
N--2 (mod 3), then the congruence 2 - x2 _ y2 (mod 3) implies that 3 1 x; for 
if x ?-1 (mod 3), then y2 2 (mod 3), which is impossible. Similarly, if N 1 
(mod 3), then 3 i y. 

In the present case where N is a primitive factor of 2' - 1 (that is, N is a 
product of primitive prime factors), we can show that x belongs to a certain arith- 
metic sequence with a rather large difference. This follows from the known fact 
that all the factors of N are 1 (mod n). If N = (x -y)(x + y), we can put 
x - Y= tn + 1 and x + y = un + 1, which imply 

(B) N=tun2 + n(t + u) +1 and 2x=n(t + u) + 2. 

Hence, 

(C) N = tun2 + 2x - 1, or x - (N + 1) (modn2) forn odd, 

and 

(D) x (N + 1) (mod n2/2) for n even (see Lehmer [10]). 

Also, (C) can be improved by noting that if N 1 2n _ 1, n odd, then [2(n+l)/212 

2 (mod N). But if 2 is a quadratic residue of N, then every factor of N will be 
congruent to i+ (mod 8). If further, N-= -1 (mod 8), then there is at least one 
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factorization N = ab, where a = tn + 1 =_ (mod 8) and b = un + 1-- -1 
(mod 8). Thus, 81 t and-2 1u, and (C) becomes x 4(N + 1) (mod 8n2). If, on 
the other hand, N = 1 (mod 8), the best that can be obtained is that 2 t and 
2 u, whence x (N + 1) (mod 2n2). 

We observe in (D) that the modulus can be increased by a factor of 
2 if (N - 1)/n is odd. (This condition often holds, as in the factorizations (2), 
(7), (15), and (39).) If we rewrite (B) as (N - 1)/n tun + t + u, then since 
n is even, t + u is odd. Hence, tu is even, say 2m, and (C) becomes 
N = 2mn2 + 2x-1. Thus, x-= (N + 1) (mod n2). 

3. Primality Testing. (a) The main theorem we have used for primality testing 
is due to Lehmer [11]: 

THEOREM 1. If there exists an a such that aNl - 1 (mod N), but a(Nl)I g 1 
(mod N) for every. prime divisor q of N - 1, then N is prime. 

Since this theorem requires a knowledge of the complete factorization of N - 1, 
as well as a successful choice of the base a for which all the hypotheses hold, a 
certain amount of auxiliary calculation is necessary before the primality test can 
.be completed (see Robinson [17]). 

Accompanying the factorizations below, in which Theorem 1 was used, are 
the complete factorization of N - 1 and a primitive root a of N, to assist anyone 
who wishes to repeat our testing. 

It is clear in some cases that the factorization of N - 1 is materially assisted 
by the form of N (see Lehmer [11]) as in (12), where N = (2104 + 1)/257 and 
N - 1 28(296 - 1)/257, which readily factors. 

In many of the calculations, such as (17), the theorem had to be applied several 
times to the cofactors at various "levels" before a final decision could be made 
concerning the primality of the original cofactor (see Brillhart [1]). In such cases 
the base used at each level is given in addition to the relevant factorization. of one 
less than the cofactor under consideration. 

It will be noted that the size of the bases used in testing (31) implies it was 
difficult to find a small primitive root for which the hypotheses of the theorem 
were all satisfied. It is of interest, then, to observe that the condition that the hy- 
potheses hold for the same base can be relaxed to allow a change of base, if needed, 
for each prime factor of N - 1. In fact, we now have the following theorem of 
the second author: 

THEOREM 2. Let N be an odd integer >1. If N- 1 = II Pi, qj prime, and if 
for each qi there exists an aifor which aiN = 1 (mod N), but ai(Nl)/qi p 1 (mod N), 
then N is prime. 

Proof. Let ai belong to the exponent di (mod N). Then di I 44(N). Let 
D = LCM(di). Then D 144(N). But di I N - 1, and di - (N - 1)/qi. Hence, 
qi di and thus qiai I D. Then N - 1 1 D, and finally N - 1 g$(N), which im- 
plies that N is prime. 

It is clear in practice that Theorem 2 is an improvement on Theorem 1, since 
if an a can be found for which aNl 1 (mod N), but a(N-l)I0 1 (mod N) for 
a particular q, then that q has been settled once and for all, regardless of what 
bases are used for the other q's. 

To illustrate Theorem 2 we note that the primality of the cofactor in (12) 
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can be decided with a = 3 for q = 3, 5, 13, 17, 97, 193, 241, 673, 65537, 
and 22253377; with a = 7 for q = 7; and with a = 11 for q = 2. However, in the 
list below we have taken the trouble to find a primitive root, rather than apply 
Theorem 2. 

It should be pointed out that there is another theorem of Lehmer (p. 331 of 
[11]), which is generally superior to Theorem 2 in that it allows a change of base 
and requires that N - 1 be factored only up to the point where its factored part 
exceeds its unfactored part. Since no advantage was gained from this theorem in 
the present investigation, where either the full factorization of N - 1 was known, 
or not enough was known to apply this theorem, we have not used it here (see 
Theorem 3, p. 704 in Robinson [17]). 

(b) Recently another test for primality has been programmed for the IBM 
7090 by D. H. Lehmer. This test is based on a theorem concerning the divisibility 
properties of the Lucas sequences U,,+ = PU - QUn-, I n _ 1, Uo = 0, U1 = 1, 
P and Q integers (see Lehmer [12, p. 442]): If UN+1 0 (mod N) and if Um. 4 0 
(mod N), where mi- (N + 1)/qi for each prime factor qj in N + 1, then N is a 
prime. 

In the testing program, P is taken to be 1 and Q is chosen so that (D/N) -1 
and (QD, N) = 1, where D = 1 - 4Q. A discussion of this test will appear else- 
where in a paper of Professor Lehmer (for a special case see p. 18 of Lehmer [13]). 
We have used this program to show the completeness of (32) and the factorization 
of 2109 - 1 in Section 4. 

The advantage of this test, of course, is that it employs the factorization of 
N + 1, rather than N - 1, so that in case the complete factorization of N - 1 
is not obtainable (or even the factorization to the square root of N - 1), we may 
still be able to factor N + 1. In those cases mentioned above where the factoriza- 
tion of N + 1 was used, we have given the value of Q at each level. 

4. Miscellaneous Results. We begin this collection of results by pointing out 
that the factorizations (1)-(4), (7), (11), (14), (15), (17), (20), and (29) supplement 
the earlier paper of Brillhart [2] and complete the table there through p < 100. 
In this listing we have made no attempt to credit the previously known factors to 
their original discoverers; however, we would like to mention that the 7-digit 
factors in (34) and (39) are due to R. M. Merson, and were transmitted to us by 
K. R. Isemonger. Many of the factors, of course, can be found in Cunningham [3]. 

We have verified the following two complete factorizations due respectively to 
D. H. Lehmer (1957, unpublished): 

23- 247 + 1 = 5*8681*49477*4611545283086450689, 

N - 1 7*216.37.31.151.715827883, a= 11; 

and E. Gabard [4]: 

2109 - 1 = 745988807.870035986098720987332873, 

N + 1 - 2.3.67-83.233.111912126900880183, Q = 5, 

N1 - 1 = 2.3.503.1801-7643-2693893, a = 3. 
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TABLE 1 

p Character of 2P-1 

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127 Prime 
(All other p under 135), 151, 163, 179, 181 Composite. Completely factored 
167, 197, 233, 239, 241 Cofactor is a pseudoprime 
157, 173, 191, 193, 211, 223, 229, 251 Cofactor is composite 
137, 139, 149, 199, 227, 257 Composite but no factor known 

In Brillhart [1] the numbers N,= (10' - 1)/9, p prime, are shown to be prime 
for p 2, 19, and 23, and for no other p < 109. We have extended the search 
for primes of this form, but there are no further primes for p < 359. This result 
was obtained by showing that aNp 1 1 (mod Np) for those Np for which no 
factor was known. For each Np this test was run twice for a = 3 with complete 
agreement in the final remainders. 

We have also examined the classical Mersenne numbers Mp = 2P - 1, p prime 
< 257, whose cofactors were of unknown character. The results of this investiga- 
tion are given in Table 1 below. This table should be self-explanatory, except 
perhaps for the term "pseudoprime", which is used in the literature in several 
different ways. 

In our usage, the term refers to an integer N > 2 which satisfies the congruence 
aN-l--1 (mod N) for some base a, 1 < a < N - 1. This definition is in contrast 
to several others in which a "pseudoprime" is taken to be some composite solution 
of this congruence (see Shanks [19]). 

We have found in practice that a number N with no particular form will gen- 
erally turn out to be a prime if it is a pseudoprime for even a single base. This is 
due, no doubt, to the relative scarcity of composite pseudoprimes. A further in- 
dication of this scarcity is found in the fact that we have never encountered a 
composite pseudoprime in testing hundreds of numbers, even though infinitely 
many of them are known to exist (see Lehmer [14], Robinson [17]). 

On the other hand, there are infinitely many numbers N with a special form, 
which we know are pseudoprimes for a particular base, but which we still cannot 
conclude are likely to be prime for this reason. A pertinent example of this is: 
a = 2 and N a primitive factor of 2' - 1, in which case we know that N = kn + 1, 
and hence that 2 21 = 1 (mod N). Thus, the term "pseudoprime" as used 
in Table 1 should be understood to refer to the base 3. 

We conclude these results with a list of all the cases of complete factorizations 
of 2n i 1 that we have seen (Table 2). This brings up to date similar lists in Lehmer 
[15] and Robinson [18]. The more recent factorizations will be found in Math. Comp. 
(MTAC) with the exception of the following (listed with the name of their dis- 
coverer): 

278 - 2" + 1 = 3.19-5302306226370307681801 (Gabard) 

281 - 241 + 1 = 13*37*279073*3618757*4977454861 (Merson) 

286 + 24' + 1 = 7-11053036065049294753459639 (Gabard) 



92 JOHN 13RILLHART AND J. L. SELFRIDGE 

210 -1 = 7432339208719*341117531003194129 (G. D. Johnson) 

2101 + 1 = 3 845100400152152934331135470251 (Gabard) 
215- 258 + 1 = 52 461 1013 1657-5981 359006912765190408181 

(Isemonger) 

2"15 + 1 = 3.11-691 2796203 1884103651 345767385170491 
(Isemonger) 

29 - 260 + 1 = 113*137*953 2381 42841*823481 536296539263941 
(Isemonger) 

2122 + 261 + 1 = 7.367*55633*37201708625305146303973352041 
(Gabard) 

2125 + 261 + 1 = 41*101*7001-8101*3775501-47970133603445383501 
(Isemonger) 

2143 + 272 + 1 = 5 397-1613-25741*3426853 9467173 
*4170165570896115649 (Isemonger) 

247 -274 + 1 = 5 29 197 14449 540961*19707683773 
* 40544859693521152369 (Isemonger) 

- 2 + 1 = 13-37-137 953 2582029-4260133-1326700741 
* 12458723489217613 (Merson) 

TABLE 2 

2n 1, n odd: n = 1-123, 127-135, 147, 151-155, 159, 163, 165, 171, 175, 179, 181, 

189, 195, 201, 225, 255, 315, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 

9941, 11213. 

2n + 1: n = 0-102, 104-118, 120, 122, 123, 126, 129, 130, 132, 134, 135, 138, 141, 

142, 144, 146-148, 150, 154, 158, 162, 165, 166, 170, 174, 178, 182, 186, 190, 194, 

195, 198, 201, 206, 210, 214, 222, 226, 230, 234, 246, 250, 270. 

2 - 2m + 1, n = 2rn - 1: n = 1-99, 103-107, 111-119, 123-127, 135, 141, 147, 
151, 133, 165, 167, 239, 241, 353, 367, 457. 

2n + 2m + 1, n = 2mt - 1: n = 1-99, 103-117, 123, 125, 129, 135, 143, 157, 163, 
171, 283, 379. 

5. Acknowledgments. We would like to express our gratitude to K. RI. Isemon- 
ger for his assistance in the present work. We would also like to state our indebted- 
ness to the Department of Mathematics at UCLA for sponsoring this investigation. 
Finally, we wish to thank D. H. Lehmer for his continuing interest and active 
contributions to the results of this paper. 

Complete Faclorizations 

1. 279 + ')0 + 1 = 5.317 381364611866507317969 
N1- 1 = 24*.32 79.365587739165978591, a- 11, 
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2. 283 + 242 + 1 = 997-46202197673*209957719973 

3. 289 -245 + 1 = 1069-579017791994999956106149 
N - 1 = 22-37 -89-109-6199 1100639243449, a = 6, 

4. 289 + 245 + 1 = 5-123794003928545064364330189 
2 2 N -1 = 2 -3 -23-89-397*683*2113-2932031007403, a = 6, 

5. 295 - 248 + 1 = 41-761 525313-2416923620660807201 
N -1 = 25.52 19-159008132938211, a = 13, 
N1- 1 = -5-23*31*68293265673, a, = 17, 

6. 296 -248 + 1 = 1153 *6337*38941695937*278452876033 

7. 297 -24 + 1 = 389-4657-4959325597-17637260034881 

8. 298 -249 + 1 = 3-5419*748819-26032885845392093851 
N -1 = 2.32 .52*72-.13*617*147192338057, a = 7, 

9. 298 + 249 + 1 = 73-337-2741672362528725535068727 
N - 1 = 2-3-72-61-337-70687-6417545220131, a = 3, 

10. 2102 + 251 + 1 = 73-919-75582488424179347083438319 
2 N - 1 = 2-3 1767853-5399800502326409847, a = 6, 

N1 - 1 = 2*3*41*43*75676151107, a1 = 5, 

11. 2103 + 252 + 1 = 5-17325013-117070097457656623005977 
N - 1 = 23-59-103-162917-14780882080883 a = 19, 

12. 21' + 1 = 257- 78919881726271091143763623681 
N - 1 = 28 .32 -5-713-1797193241673-6553722253377, a = 61, 

13. 2107 + 1 = 3*643*84115747449047881488635567801 
N - 1 = 23-52_107-3930642404161115957412877, a = 41, 
N1- 1 = 22.32-71-747619-1020797-2015036747, a1 = 5, 

14. 2107- 24 + 1 = 5-857-37866809061660057264219253397 
2 N - 1 = 2 19-107-353-91813-143675l3657196977; a = 21, 

N1- 1 = 24.32-547-1103-1653701519, a1 = 5, 

15. 2107 + 214 + 1 = 843589*8174912477117*23528569104401 

16. 2109 + 1 = 3-104124649-2077756847362348863128179 
N - 1 = 2-3-29-10921427369-5112697847507, a = 3, 

17. 2109 + 265 + 1 = 5669-666184021-171857646012809566969 
N -1 = 23-3-191093457622042749267, a = 7, 
N1- 1 = 2-3-7-82324334351173, a1 = 5, 
N2- 1 = 22 -3210559-32575469, a2 = 5, 

18. 2110 + 2" + 1 = 7-151-599479-2048568835297380486760231 
N -1 = 2-3-5-113129527*6781965931002463, a = 6, 
N1- 1 = 2-3-41*491-811-69233797, a1 = 6, 

19. 21" - 256 + 1 = 13*593*231769777* 1453030298001690873541 
N -1 = 22 *3*5*37*109*302663* 19839734921, a = 7, 
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20. 2"' + 25 + 1 = 5 58309 2362153@ 15079116213901326178369 
N - 1 = 26. 32. 72.89 113 1373 191281 202277, a = 11, 

21. 2114 + 25 + 1 = 73.93507247-3042645634792541312037847 
N - 1 = 2.32 .719 232-7823-307113018359177, a = 6, 
N1 - 1 = 23 156841-244764617, a1 = 3, 

22. 2116 + 1 = 17*59393 82280195167144119832390568177 
N - 1 = 2 .13-17-29-71-89.580231-218844570055711, a = 3, 
N1 - 1 = 2.3.5*1923-39371-423991, a1 = 19, 

23. 2117 - 259 + 1 = 5.109.1613.3121*7489*21841 370244405487013669 
N - 1 = 22 43_13*1360283*64620583, a = 17, 

24. 2121 - 1 = 23 89-727-1786393878363164227858270210279 
N - 1 = 2.33-112.273399736511044418098908817, a = 6, 
N1 - 1 = 24.32.47.79.103-211-75983.309652459427, a1 = 10, 

25. 2123 - 262 + 1 = 5.10169.43249589-802333429 6027043735173469 
N - 1 = 22 2 3-741-587.27241-109441, a = 11, 

26. 2123 + 262 + 1 = 13-2953-181549-12112549.125965976976392564317 
N - 1 = 22.3.41.127.467.9803.440360699, a = 7, 

27. 2126 2f3 + 1 = 54 428001 96001 -268501 94291866932171243501 
2 N - 1 = 2 .53.11-557*1603673*19192897, a = 29, 

28. 2126 + 2"3 + 1 = 262657-1560007-207617485544258392970753527 
N - 1 = 2 . 33 7 - 43 - 109 - 3449 - 376889 90150993481, a = 5, 

29. 2127 - 264 + 1 = 509-26417.140385293.90133566917913517709497 
N - 1 = 2~.3-127-29571380222412571427, a = 7, 
N1 - 1 = 2-13.1061802263 1071160627, a, = 6, 

30. 2130 - 266 + 1 = 3.331.107251.22366891.571403921126076957182161 
N - 1 = 24 .3.5.13 183142282412204152943, a = 19, 
N1 - 1 = 2.23.3981353965482698977, a1 = 5, 
N2 - 1 = 26 .3.71.941.52571-11807701, a2 = 5, 

31. 2130 + 265 + 1 = 7.79.151.121369.134304196845099262572814573351 
N - 1 = 2.32.52 .711.13.298155615151735514647163, a = 29, 
N1 - 1 = 2.13.19.86573.6971617904258551, a, = 37, 
N2 - 1 = 2.3.52.83.559969309579, a2 = 37, 

32. 2'31 - 1 = 263 10350794431055162386718619237468234569 
N + 1 = 2.3.5.72.112.2711-21465522331181621122125609701, Q = 17, 
N1 + 1 = 2.33.892 .30211.1661126041959455923, Ql = 29, 
N2 + 1 = 22 .389.22901.46616380229, Q2 = 1, 

33. 2133 - 1 = 127.524287.163537220852725398851434325720959 
N - 1 - 234 .7.19.23-73.252313.77555939.231017337191, a = 3, 
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34. 2'34-267 + 1 = 3*2011 9649-6324667-59151549118532676874448563 
N - 1 = 2*33.72 13*67*1381*2861*6496008606077, a = 3, 

35. 214 + 267 + 1 = 7.1609-22111.87449423397425857942678833145441 
N - 1 = 25*3.5*13*67*1559*4027*15053*1681973*1315914679, a = 29, 

36. 2150 + 275 + 1 = 73*631*23311*115201 617401*1348206751 
* 13861369826299351 

N -1 = 2;32 52 .41 1933 . 388667231, a = 3, 

37. 215- 1 = 312.311.11471 73471 2147483647-4649919401 18158209813151 

38. 2170 + 285 + 1 = 7 103 151 2143 11119 106591 949111 
* 5702451577639775545838643151 

N - 1 = 2.3*52 .11 *17*1163 1471*5197*43793*522130351, a = 13, 

39. 2'~' + 286 + 1 = 1337253091311011609695253135675149 
*39291697 * 99463730244517 

40. 2'75-1 = 31*71*127*601*1801*39551*122921*60816001 
- * 535347624791488552837151 

N - 1 = 2.52.7.97*137.331*261389.1330332599, a = 13, 

41. 2210 + 2105 + 1 = 73*631*23311*92737*649657*870031*983431 
.29728307155963706810228435378401 

N - 1 = 25.32 .52.7.19.3361.11329.3163739.257706459649, a = 23. 
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