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Approximations for the Psi (Digamma) Function
By William T. Moody

A series of approximations has been derived for the psi function. As used here,
the psi function is defined as the derivative of the natural logarithm of the gamma
function; that is

_dinT(x)] _ I'(z)
¥(z) = dx T T(x)

The approximations are best in the Chebyshev sense, in that the magnitude of
the maximum error in the prescribed interval is minimized. Each approximation is
of the form

y(1 +1x) = T —v+3 g +Zc,(x — 2" +e(z), 0=z=1,
=1
wherein
= 0.5772 ---, (Euler’s constant).

Values of the constants, ¢;, and the limiting values of e for n = 4, 5, 6 are given
in Table 1 below. The error of the approximation vanishes at the end points.

TABLE 1
Values of Constants

T, 4 5 6

€ <. 1.3 X 10— 1.3 X 1077 1.3 X 10—
7 C;
1 +0.644876 +0.6449266 +0.64493313
2 —0.201186 —0.2019040 —0.20203181
3 +0.077968 +0.0812656 +0.08209433
4 —0.026867 —0.0334532 —0.03591665
5 — +0.0111653 +0.01485925
6 — — —0.00472050

Bureau of Reclamation

Federal Center

Denver, Colorado

Received March 28, 1966. Revised August 4, 1966.



