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One of the important problems in numerical analysis which arises in scientific and 
engineering research is that of numerical integration of a system of differential 
equations. Because of the frequency with which this problem occurs, it is valuable 
to have a general-purpose numerical scheme with which the integration of a large 
class of differential equations can be reliably performed. One numerical scheme 
which is useful as such a general-purpose method, and well adapted for efficient 
use with digital computers, has been proposed by A. Nordsieck [1], [2]. This scheme 
is designed to solve a system of first-order equations, 

(1) dyi/dx =fi(x,yl,y2, *.* ,yY), i = 1,2, . ,n, 

with given initial conditions, whenever the fi are such that a unique solution exists. 
The basic formulas of the method are equivalent to the fifth-degree polynomial 

approximation that can be constructed from the values of the yi and fi at the current 
value of x along with the values of the fi at the four preceding values of x. The 
equivalent approximating polynomial is identical with that of the Adams method of 
integration [3], [4]. However, Nordsieck has reformulated and modified the Adams 
method in a way which is of interest for practical application. 

An important practical feature of Nordsieck's scheme is the automatic increase 
and decrease of the elementary interval size during the course of the integrationi. 
This is accomplished by means of two tests which are performed at each elementary 
integration step. One test adjusts the truncation error in the solution. The other 
test is intended to guarantee that the integration scheme be numerically stable 
throughout the integration; that is, those solutions of the equations of the numerical 
method which are not related to the differential equations are supposed to be 
damped out if this test is always satisfied. Another important feature of the scheme 
is that it is self-starting. 

Problems which have been done with this method by the authors or their col- 
leagues include integration of the nonrelativistic equations of motion of a charged 
particle in a magnetic field, integration of the equation for the radial wave function 
in some problems of atomic physics,' and all of the problems reported by Nordsieck 
[1]. The method, in its present form, worked very well for all of these problems. 
M\odification of the stability test came as a result of difficulties which were some- 
times encountered when integrating the equations of motion of a charged particle 
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with earlier floating-point versions of the integration scheme. These difficulties were 
(1) reduction of the elementary integration interval to unnecessarily or absurdly 
small values, and (2) unstable "blow-up" of the solution. 

Nordsieck formulated the integration scheme for fixed-point arithmetic. The 
purpose of this note is to explain modifications of the original formulation which 
allow satisfactory operation with floating-point arithmetic.2 The major modifica- 
tion, discussed in the first section, is a reformulation of the stability test itself, in 
order to correct a flaw in the original formulation, and this modification is recom- 
mended for both fixed-point and floating-point operation. The special procedures 
proposed by Nordsieck (novel rounding techniques and the use of guard digits), 
which were helpful in avoiding malfunctions of the test as it was originally formu- 
lated, are discussed in the second section. 

I. The Stability Test. In his original paper [1] Nordsieck proposes a sufficienlt 
condition for insuring stability of the numerical method with a comfortable margin 
of safety. In terms of the elementary integration interval h and the eigenvalues of 
the matrix &f/&y, whose elements are &fil/yj, the condition is [la] 

(2) (95/288) | hX| < '8 

for each eigenvalue X. Nordsieck does not require satisfaction of this inequality 
directly. Instead, he proposes a test which is intended to insure satisfaction of the 
inequality, and which is more easily applied. However, his test does not guarantee 
the validity of the stability condition (2), except in the special case that only a 
single differential equation is to be solved. Let y and f denote the column matrices 
whose elements are yi and fi, respectively. In the course of the iterative solution of 
the implicit equations of the scheme, three approximations to y are computed which 
are called y(l), y(2), and y(3). For the present discussion, all we need know about the 
8(k) is that they are column matrices related to the square matrix &f/9y through the 
approximate equation [lb] 

(3) (y(8) _ y(2)) - (95/288) h (df/dY ) (Y(2) -Y1) 

If there is only one differential equation to be solved (n = 1), then y(1), y(2), y(3) 

and df/dy are all single numbers, as opposed to true matrix quantities, and we have 

(4) 
1 
Y -Y 

2 
(95/288) 1 h( af/ay)| I Y(2) _ y(l) I (n = 1). 

2 A computer program, incorporating these modifications and using floating-point arith- 
metic, has been written in the FORTRAN-II and FORTRAN-IV languages and has been found 
to operate very satisfactorily with the IBM 7094 and 7030 computers. Details of this program 
are given in Los Alamos Scientific Laboratory Report No. LA-3292 (March 1965), "A FOR- 
TRAN Version of Nordsieck's Scheme for the Numerical Integration of Differential Equa- 
tions" by H. R. Lewis, Jr. and E. J. Stovall, Jr. The programming details are in large measure 
based on the computer program of an earlier floating-point version of Nordsieck's integratioll 
scheme which was kindly made available to us by R. M. Brown and P. Ponzo of the Coordi- 
nated Science Laboratory of the University of Illinois. That program, dated October 1, 1963 
and designated D2 (F) UOFI DEQ, was part of the 1604 comptuter library of the Coordinated 
Science Laboratory. The program of another earlier version, dated October 26, 1962 and desig- 
nated BCC Library Routine No. 5. 02. 06, was made available to us by E. P. Gray and J. G. 
Monteabaro of the Applied Physics Laboratory of the Johns Hopkins University. 
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For the case n = 1 the test proposed by Nordsieck to insure satisfaction of the 
stability condition (2) can be written as [ic] 

(5)~~~~~~ y y(3) _ (2) 1 < .1 I y(2) _ y(l) (5) J()- y - (l 

Indeed, for n = 1, the inequalities (2) and (5) are identical to within the approxi- 
mation that (3) is an exact equation. (If n = 1, then X = Of/Oy.) 

However, if there are two or more equations to be solved simultaneously 
(n > 1), then the situation is different. Let a norm of a matrix be denoted by 
enclosing the matrix symbol between double vertical bars; then, with suitably 
chosen norms, the relation corresponding to Eq. (4) is3 

288 ay h - 
I I y (2) - y(l) (n > 1). 

Let Xmax be that eigenvalue of df/dy which has the largest magnitude. A standard 
inequality relating || df/dy || and I Xmax j is [5] 

( 7 ) |jXmax I < |l |af/ay I. 

The stability test proposed by Nordsieck for the case n > 1 may be written as [1c] 

(~~~~~~ I 11 (3) _ y (2) yll y(2) _ y (l) 11< 1 

where the column matrix norm used is either the largest magnitude of any element, 
or the euclidean norm. From relations (6), (7) and (8), we see that no bound what- 
soever is obtained on 1f h af/ly 11 or on I hmax I . Indeed, there are cases for which 
the inequality (8) which represents the test is satisfied while the inequality (2) 
which represents the stability condition is violated.4 Numerical examples illustrat- 
ing this point can be found easily. 

The stability test which we propose, and which we have used in our floating- 
point version of the scheme, is precisely the basic stability condition given by 
expression (2). That is, the elements of the matrix af/ly are evaluated-analytically 
if possible, numerically otherwise-and either an upper bound of the magnitudes 
of the eigenvalues, or the largest eigenvalue itself, is computed and used in (2). 

The original stability test was subject to malfunction because of round-off noise. 
This difficulty was alleviated, in the fixed-point version, by use of novel rounding 
techniques and by use of guard digits. Such round-off noise problems do not inter- 
fere with the direct application of the stability condition. 

II. Guard Digits and Special Rounding Procedures. In the fixed-point version 
of this integration scheme, with the stability test in the form given by expression 
(8), Nordsieck found it desirable to carry logo (I h 11) more digits in y than in 
f-so-called guard digits [ld]. (d is the base of the number system with which com- 
putations are performed. For example, ,B = 2 with binary arithmetic.) The reason 
given for this is to minimize the accumulation of round-off error in y when the 

I If the square matrix and column matrix norms are so chosen that (6) is valid, then these 
norms are said to be consistent with one another. Norms are usually chosen in this way. See, 
for example, t5]. 

4A. Nordsieck (private communication) agrees that the stability test as originally formu- 
lated does not insure satisfaction of the stability condition (2). 
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number of elementary steps is large. A different reason for keeping the guard digits 
is that a certain form of round-off noise then tends not to interfere with the function- 
ing of the original stability test (8). This can be seen in the following way. From the 
equations of the integration scheme [1], it is easily derived that the differences, 

y(3) - y(2)) and (y(2) - y(l)), can be expressed as 

(9a) y(3) - y(2) = (95h/288) {f[x + h, y(2)(x + h)] -f[x + h, y(l)(x + h)]} 

and 

(9b) y = (95h/288) {f[x + h, y(l)(x + h)] - fP}. 

The y(i) are approximations to y for the independent variable equal to x + h; f, 
called the "predicted" value of f in [1], is a first approximation to the value of f 
at x + h. Using Eqs. (9a) and (9b), the original stability test (8) can be rewritten 
as 

(0 lfx + h, y(2)(x + h)] -f[x + h, y(1)(x + h)] 

(10) <= 18 IIf[x + I-I, y(l)(x + h)] - fp 1 

Since the inequality depends explicitly on differences of computed values of the 
derivatives, it is evident that round-off noise in those values can interfere with the 
functioning of the original stability test. We can estimate the amount of error in 
f(x, y) due to an error in y, for the case n = 1, as follows. Letting Ay be the error 
in y and Af the corresponding error in f, we have, in first approximation, 

(11) I Af I- Ialay I I Ay I 

However, I df/dy i is bounded by the stability condition 

(12) 4 ay 8(95/288)I h I 

Combining (11) and (12), we have 

(13) 1 f < 36 1 Ay - loog(36j95.1/lhI)y 

Taking the case of binary arithmetic (f = 2), we see that, for n = 1, an error 
equal to the least count in y will usually give rise to an error less than the least 
count in f if log# (1/ I h 1) more digits are carried in y than in f. Thus, round-off 
noise of the magnitude of the least count in y would tend not to interfere with 
application of a stability test in the form of expression (10). 

In floating-point arithmetic it is difficult to use guard digits for stopping the 
propagation of round-off noise from y into f, even in the case n = 1. (One possibility, 
which is numerically not quite equivalent to the use of guard digits in fixed-point 
arithmetic, is to use double-precision arithmetic for y.) It is, therefore, fortunate 
that the present stability test, which is identical to the stability conditian (2), is 
not influenced by such noise. Neither guard digits nor double-precision arithmetic 
have been used in our present floating-point version of Nordsieck's scheme. 

A novel way of rounding certain quantities which appear in this integration 
scheme was introduced in the original fixed-point version; this type of rounding was 
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called "rounding away from zero" [10]. The purpose of this rounding was to elimi- 
nate a type of noise which sometimes interfered with the proper operation of the 
tests which control the size of the elementary interval. A floating-point procedure 
can be devised which is analogous to rounding away from zero in fixed-point. We 
have tried this procedure in our floating-point version of the integration scheme 
which incorporates the new stability test. However, with that version of the integra- 
tion scheme, we have not observed any over-all improvement in the operation of the 
interval control logic when these rounding procedures are included; nor have we 
observed any malfunction of the interval control logic when these special rounding 
techniques are omitted. The floating-point "rounding away from zero," at least 
when done with the Fortran computer language, is rather time consuming, with 
the result that the computer time necessary for a particular problem can be sub- 
stantially longer with the special rounding techniques than without. For these 
reasons, "rounding away from zero" has been omitted from the floating-point 
version of the integration scheme. 

We express our appreciation to R. IN/f. Brown and P. Ponzo of the Coordinated 
Science Laboratory of the University of Illinois, and to E. P. Gray and J. G. 
Monteabaro of the Applied Physics Laboratory of the Johns Hopkins University, for 
kindly providing us with their floating-point versions of Nordsieck's integration 
scheme. The present work began as a result of using their computer programs. 
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