
TECHNICAL NOTES AND SHORT PAPERS 

On Convergence Rates for Line Overrelaxation 

By John Gary 

This note is devoted to the solution of Poisson's equation by finite difference 
methods. We will empirically determine the convergence rate for successive linle 
overrelaxation (Liebmann method) to show that there is a qualitative difference 
between Neumann and Dirichlet boundary conditions. Keller has shown that the 
convergence rate for Dirichlet boundary conditions on a rectangular mesh depends 
on the ratio a = (Ay/A3x)2 [2]. Convergence is much faster if this ratio is small, 
provided the implicit direction is parallel to the y-axis. 

The computation described here indicates that in certain cases the convergence 
rate is independent of a for Neumann boundary conditions. These seem to be the 
cases in which the solution of Poisson's equation contains a Fourier component 
which is independent of y, for example, u = cos x + cos x cos y. Such cases do arise 
in applications. One such application is the numerical solution of the Navier- 
Stokes equations for incompressible viscous fluid flow between two plates. In this 
case, a Poisson equation with Neumann boundary conditions and a ' .01 must be 
solved to obtain the pressure. Under certain conditions the pressure tends to re- 
semble the function cos x (1 -e 8) 

The computation also shows that convergence for the Liebmann method can 
be very slow with Neumann boundary conditions. On the other hand, the computa- 
tions indicate that convergence in the Dirichlet case is quite rapid for small values 
of a independent of the form of the solution u. This is in agreement with the theo- 
retical results by Keller. 

For comparison we will describe convergence rates obtained with an ADI 
(alternating direction implicit) method applied to Dirichlet and Neumann bound- 
ary conditions. The results indicate that convergence is slower in the Neumann case. 
However, the difference between Dirichlet and Neumann conditions with ADI is 
much less thani with the Liebmann method. 

To our knowledge there is no published work which yields an expression for the 
convergence rate of the Liebmann method with Neumann boundary conditions. 
There are a few papers concerned with the convergence rate of iterative methods 
for singular systems [1], [3], [4]. 

We wish to solve the equations: 

a[2ui, - 0,aUl+1,j - 0XUi_uj_ + 2uiJ - Tj+ui,+i -Tjui,j1 = P 

or 

a[(O,+ + et6)U1j - -i U,+1, 

+ Nfl+ + 7)J - Ui,j+1 -Tj ui,j-1 - P 

where 1 < i < Nx, 1 < j < Ny, a = (AY/AX)2, 
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As = 1, i<N, 7 =0, 1, = = 1, j < Ny , = O, j= 1, 

= O,i Nx , = 1, i > 1, = O, j = NY , 1 j > 1 

The first equation corresponds to Dirichlet boundary conditions, the second to 
Neumann boundary conditions. The convergence rate is determined as follows. We 
first select a function ui, 1 ? i ? NX, 1 < j < Ny. Then the right-hand side 
pi, is computed from the equations above. Therefore, we can easily determine the 
error at any stage in the numerical solution of these equations since the exact solu- 
tion ti, is known. 

Since the convergence rate depends on ui , we used several different functions 
uij Which are displayed in Table 1. In all cases the initial guess was taken equal to 
zero, that is, u() = 0. Then the successive iterates zfk) were computed along with 
the relative error. 

(k) M iNax IKt) - utj /Max I uJl- 
ij ij 

The Liebmann algorithm for u k) (Dirichlet case) is 

,y[ (2 + 2a)u 
(k 

- Jj+u (k+l) - 7-u8(k+l)] 

(y - 1) [ (2 + 2a)u? - J/+U - 'J'7uI )] 

+ a[Oi 6UiN ] + ]+pi - 

TABLE 1 

Log err-or after 48 iterations 
E = relative error- 
a = (Ay/Ax)2, Nx=N, = 40, 0<x<4 < y 2ir 

-logio (e) 

Solution u = a Line relaxation ADI 

Dirichlet Neumann Dirichlet Neumann 

cos x 1.0 3.4 2.2 11.9 9.7 
0.01 13.0 2.2 11.3 7.4 

(1-e-y/er) cos x 1.0 3.6 2.2 11.9 9.9 
0.01 12.4 2.2 11.6 7.6 

.Olx/47r + cos x(1 + 1.0 3.3 2.1 11.2 9.0 
.0O5cos y) 0.01 12.0 2.2 11.3 6.0 

x(x - 47r)y(y - 2ir) 1.0 3.4 2.3 12.0 9.7 
0.01 12.4 2.2 11.5 7.4 

Cos x cos y 1.0 3.5 3.4 12.1 11.9 
0.01 12.6 12.5 11.8 11.5 

cos (x + y) I 1.0 3.5 2.1 12.0 11.8 
0.01 12.6 12.4 11.8 10.5 
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For values of -y in the range 2 < y < 1 we have overrelaxation. The optimum value 
of y was found experimentally by observing the convergence rate at various values 
of 'y. 

The ADI method is defined in terms of the operators H and V given below (for 
the Dirichlet case): 

Hu = a[2uij - i+U+l,j-0 vi-l ], 

Vu = 2uij - *j'u ij+l -+ - Pju,j. 

One ADI iteration consists of the two steps: 

(rkl + H)u (l) = (rkl - V)u(k) + p, 

(rkl + V)u() = (rkl - H)u(k+l12) + p. 

The sequence of positive numbers rk is defined as follows: 

rk = 7 for k = 1, 2, ., 8, 

where u = (7r/Nx)2, 5 = (4/3)1/16 and u is adjusted to obtain the most rapid 
convergence [5]. The remaining values of rk are defined modulo 8, that is r9 = ri, 
rlo = r2, etc. This probably does not provide an optimal choice of these eight param- 
eters, so that the ADI method may be somewhat better than the results below 
indicate. 

The results of the computation are given in the two tables below. The error E(k) 

is given for various values of the iteration count "k" and the parameters a, A,, and 
,y. The values of A and y are chosen to minimize the error on the 48th iteration. The 

TAB LE 2 
Log error after k iterations (e = relative error) 

a = (,y/,Ax)2, Nx = N, = 40, u = cos x, 0 < x < 47r, 0 < y 2r 
y = relaxation parameter, ,u-convergence rate parameter for ADI 

k k 
a a 

8 24 48 96 8 24 48 96 

-logio (e-) _-logio (C.) 

1.0 1.0 2.9 7.4 11.9 11.9 1.0 0.51 1.9 6.0 9.7 11.2 
0.1 0.032 2.9 8.0 11.4 11.4 0.1 0.064 1.4 4.7 9.5 10.3 
0.01 0.004 2.1 6.4 11.3 11.2 0.01 0.004 1.4 3.9 7.4 9.4 

AD I-Dirichlet AD I-Neumann 

k k 

8 24 48 96 
a 

8 24 48 96 

-logio (e) -logio (e) 

1.0 0.56 0.3 0.8 3.4 6.6 1.0 0.53 0.04 0.7 2.2 4.0 
0.1 0.62 0.7 2.4 7.0 12.1 0.1 0.53 0.04 0.7 2.2 4.0 
0.01 0.88 2.1 6.7 13.0 13.0 0.01 0.53 0.04 0.7 2.1 4.0 

Line Relaxation-Dirichlet Line Relaxation-Neumann 
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values of the error shown in the tables correspond to these (approximately) optimal 
values of , and y. These computations were performed on the CDC 6600 at the 
National Center for Atmospheric Research. 

National Center for Atmospheric Research 
Boulder, Colorado 
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Canonical Decomposition of Hessenberg Matricest 

By Beresford Parlett 

1. Introduction. A square matrix A is said to be in (upper) Hessenberg form if 

ai, = 0 for i > j + 1. Such matrices occur frequently in connection with the eigen- 
value problem. In practical work it is an important fact that any square matrix may 
be transformed in a stable manner into a similar Hessenberg matrix, see [5]. 
Apart from possible economies in computing the eigenvalues we may ask whether a 
preliminary reduction of a full matrix to this form offers any other advantages. 

We show here that this reduction replaces an arbitrary independent set of eigen- 
vectors by one which has some useful theoretical properties. In other words if J is 
the (lower) Jordan canonical form of A, say 

(1.1) A = Y-'JY, 

then the rows of Y are the row eigenvectors of A. When A is defective we must 
interpret eigenvectors in the generalized sense (as principal vectors). For general A 
we can say nothing about Y other than det (Y) # 0. If A is a Hessenberg matrix 
then Y has the properties summarized in Theorem 1. 

We should remark here that our results are fairly straightforward deductions 
from Lemma 1 which is well known, but not in the form used here. The purpose of 
this note is just to extract the properties which are latent in that lemma: essentially 
the triangular factorization of Vandermonde matrices. 

As we show in [7] the existence of this factorization helps explain the remarkable 
convergence properties of the QR algorithm of J. G. F. Francis [1]. The result is also 
useful in discussing other problems involving Hessenberg matrices. We note that 
"the" Jordan form is unique only to within the order of the submatrices of which it 
is a direct sum. The factors in our decomposition depend on this order and here we 
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t This work was begun while the author was a summer visitor at the Argonne National 
Laboratory, Illinois. It was completed under contract NONR 3656(23) with the University 
of California. 
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