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Conversion of Modular Numbers to their Mixed
Radix Representation by a Matrix Formula

By J. Schénheim

Introduction. Let m; > 1, (£ = 1, 2, - - -, s), be integers relatively prime in
pairs and denote m = myms -+ - m, . f 2,0 S z; < my, (¢ = 1,2, ---, s) are in-
tegers, the ordered set (z,, 22, « - - , ;) is called a modular number, with respect to
the moduli m; (¢ = 1, 2, -- -, s) and it denotes a unique residue class mod m.

Modular arithmetic has been developed [1], [2], [5], and its use in computers has
been suggested [1], [5]. It has also been applied in the solution of various problems
(2], (6]

A central question is to determine the least nonnegative residue mod m of a given
residue class (21,22, - -+ , Z). Denote it by n. In order to work entirely in the given
modular system it was suggested [1], [3], [7] and [8] to obtain n in its mixed radix
representation with respect precisely to the radices m; (¢ = 1, 2, ---, ), thus in
the form

n = by + bemy + bgmums + -+ 4 bgnams - -+ My

where 0 < b; < ms, (1 = 1, -+-, s). In these methods the modular number
(b1, b2, - -+, bs) is obtained from the modular number (2, , 2., - - - , Z.) sequentially
or iteratively.

We propose here (see Theorem) a matrix method which consists in precalculating
(s — 1) matrices, 4;, (¢ = 1,2, -+, s — 1), which depend only on the moduli
m; (¢ = 1,2, .-+, s) and in obtaining (b1, bs, - -+, b,) by postmultiplication of
(1,22, -+, ) by A1, A2, - -+, A1 or more precisely, observing the nonassoci-
ativity of the used matrix product, computing:

(brybe,bgy ooy bs) = [ -[[(21, 22,23, -+, ) As)An]- -+ A g]Aey .

This method is simpler than Mann’s method [3] and concentrates the sequential
Svoboda-Lindamood-Shapiro method [1], [4] in a single matricial formula.

Definition 1. Let A = [a;;] and B = [b;;] be matrices of s columns with integer
elements, whose rows may be regarded as modular numbers with respect to the
moduli m; (¢ =1, ---, s). Define, provided B has s rows, C = AB as C = [c¢4],
Ciy = Z ai,,b,,j (mod mJ‘), 0 = ci < m; .

This matrix multiplication is not associative in general, but two exceptions are
mentioned in the following lemma.

LEmmA 1. Let E = Ey,y (fizedt,v = 1,2, -+ | h < s) bes X s matrices having
units in the main diagonal, ¢, as vth element in the ith (v 5 ©) row and zeroes elsewhere.
Let D be a diagonal matriz of the same size. Then if X is an arbitrary matriz with s
columns and A an arbitrary s X s matrix, we have:

(1) (XA)D = X(AD),

(2) (- ((XE)Ey) - )En = X((- - ((ErE2)Es) - - - ) En).
Proof. Properties (1) and (2) are immediate consequences of the definitions.
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Remark 1. The matrices E, (v = 1, - -+ , h) are generalized elementary matrices.

Notation. Denote x = (2, , z2, - * -, %,) if x is an arbitrary number of the residue
class (x1, 22, -+ +, ;) mod m and denote n = (1, 23, - - -, x,) if n is the least non-
negative residue of the class.

LemMa 2. If (21, 22, -+ ) s a modular number with respect to the moduli
ms(2=1,---,8)andn = (21,22, -+, ;) whale

Lo — X1 Xz — 1 T, — X1
m om Tomy

means a modular number with respect to the moduli m; (v = 2,3, - -+ , s) then

N—T_ (T—T1 Tz — N Ts — X1
m m T om 7 m )
Proof. n — x; is divisible by m; and since 0 < n < m, it follows that

n—on m
< —.
ma ma

0=

Definition 2. Let m:" = my (modm;), i < 7 < 5,0 < my; < my; and put

ny = m; — my; . Let I, be the identity matrix of rank k. Define, for1 =k =< s — 1,
s X s matrices,

r | A
I =1 : 0
S
l
: 1 N +1 Nk et2 Ni,s
A, = L0 M o1 0 e 0
kT (0 0
1 M k+2 0
U
i .
1 .
10 0 0 e Mis
L J

LEmMA 3. If (41, Y2, -+, Ys) 2s @ modular number with respect to the moduli
m; (1 =1,--+,8), then

’

Yetr — Ye  Ys — Yk
ko my ’ my ’

(3) (ylryZ:"')yB)Ak=<y17y2)"‘7y

Proof. The matrix A, is the product of the elementary matrices Ex i+a1(nk 141)
-+ + Eys(nxs) multiplied by the diagonal matrix

r il

I
M k1

Mis
L J

By Lemma 1 associativity holds and the effect of postmultiplication by A is the
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same as the effect of successive postmultiplications by Exxi1, Exrsz, -+ , Er and
D, which is precisely the right side of (3).

Lemma 4. Letn = (21,22, -+ -, %) and let qi ,7: (i = 1, - - -, 5) be the quotients and
the remainders in the successive divisions

n = maqa + 11,

(4) .
gi = Mipgin + 710 (E=1,---,5—1)
then
(o (((@y @y ooy @)A)As) - )Ak =(T1, To, o Th ) Thgt, Yicke, Yaass * oy Ys)
and

(Thtty Yrtas * "5 Ys) = Qi -

Proof. Proceed by induction on k. Let £ = 1. Then by Lemma, 3

Lo — X1 T2 — 1
(xl,--~,xs)A1=<x1, P >:
my me
hence 1 = #; and by Lemma 2,
T — 1 Ts — X1\ _ N — X1
= = ¢.
my ’ ’ n my 1
Therefore
Lo — X1 __

rs  (mod ms) 0= r < m.
my

Suppose the assertion is true for 1 < £k < h < s — 1, thus
(5) (@, @y o @) Ar) - JAna = (11,70, * T Yntd y Yngr, ** 5 Ys),
and
(6) Q1 = (T, Yntr, * 0 5 Ys)
with respect to the moduli m; (¢ = h, h + 1, -+ - , 5). Then by Lemma 3 and (5)

(Cooo (1, Ty oy @) A1) ) A1) An =<,~1,,~2,...,rhyh+l - ’”",...,ys .
mp mp

and by (6) and Lemma 2

Yrt1 — Th Ys — ThY _ Q=1 — Tp q
A = = g.
mp ’ ’ mp mp
Therefore
1 — Th
Ykt = T Tht1, 0 = men1 < Mpta.

mp

Hence the result is true for & = h.
THEOREM. If m;,m; > 1 (i = 1,2, -+, s) are integers, relatively prime in pairs
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m = m - ms, and if n s the least nonnegative residue of the class
(21,22, -+ ,2,) modmand by, by, -+ , b, are the digits of the mized radix represen-
tation of n with respect to the radices m; (¢ = 1, - - - | 8) then with matriz multiplication

and matrices A; (¢ = 1, -- -, s) as defined in Definitions 1 and 2
(by, by, -, by) = (- (((x1, 22, -, T)A1)As) -+ )Asy .

Proof. The digits by, - - - , b of the required representation are the remainders of
the successive divisions (4) and the theorem is a corollary of Lemma 4 withk = s — 1.

Remark 2. The above algorithm requires in general s — 1 matrix multiplications,
butif ¥ < s — 1 and

(7)) (- (((xy,22, -+ ,2)A1)As) - )Ar = (11,72, *** ,T41,0,0, - -+ ,0)

then the right side of (7) is the result, and no further multiplications are needed.
Example. Let 2, 3, 5, 7 be the moduli m; , mz , ms , ms . Then the numbers m;; ,
1 < j are given by

2 3 4
2 5
3
and therefore the numbers n;; are
1 2 3
3 2
4
The matrices 4y, 45, 4; are
r r -, r A
11 2 3 1 0 0 0 1 00
0200 01 3 010
A1= 5 A2= 5 A3=-"
0 0 30 00 20 0 0 1
0 0 0 4 0060 | 0 0 0 3

Let (0200) be a residue class mod 210. Let n be the least nonnegative residue of this
class. Then b;, bs, bs, by, the digits of the mixed radix representation of n, with
respect to the radices 2, 3, 5, 7 are given by

(bl 5 bz, ba 5 b4) = (((0 20 0)A1)A2)A3 = (0 13 4)

Indeed 0 4+ 1-2 + 3-2:3 + 4-2-3-5 = 140, 140 < 210 and 140 = 0 (mod 2),
2 (mod 3), 0 (mod 5) and 0 (mod 7).
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