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Abstract. In this paper we derive a class of numerical integration formulas of a 
parallel type for ordinary differential equations. These formulas may be used simul- 
taneously on a set of arithmetic processors to increase the integration speed. Condi- 
tions for the convergence of such formulas are formulated. Explicit examples for 
two and four processor cases are derived. Results of numerical experiments are 
given which show an effective improvement in computation speed. 

0. Introduction. In this paper we consider the problem of speeding up the nu- 
merical integration of an ordinary differential equation. We suppose that we have 
a computer with a number of arithmetic processors capable of simultaneous opera- 
tion and seek to devise parallel integration algorithms for execution on such a 
computer. 

We do not address the combinatorial question of programming a calculation into 
independent segments which can be parcelled out among the processors. Instead we 
obtain new integration formulas which can be executed in parallel on a set of arith- 
metic processors and thereby increase the integration speed. 

In ?1 we introduce the notion of computation front and describe the basic idea 
for broadening the front to allow for parallel computation. In ?2 we give a general 
formulation of a class of parallel integration methods of the linear multistep type for 
any even number of arithmetic processors. We also formulate sufficient conditions 
for the convergence of such numerical methods. In ?3 we apply the theory intro- 
duced in ?2 and derive explicit classes as well as individual examples of integration 
methods. In ?4 we present a discussion of the merits of various integration methods 
and give the results of numerical experiments with certain of the parallel methods 
derived in ?3. These results show effective gains in computation speeds. In an ap- 
pendix we consider Runge-Kutta formulas which can be used in a parallel mode. 

1. Description of the Numerical Method. The numerical integration of the 
initial-value problem for an ordinary differential equation y' = f(x, y) by finite differ- 
ences is a sequential calculation. By this we mean that the approximation to the 
solution of an ordinary differential equation obtained by methods like linear multi- 
step or Runge-Kutta evolves one point at a time. The solution at each new mesh 
point is a prescribed function of the values of the solution at certain previous mesh 
points. 

Suppose that it is essential to find a numerical solution with a prescribed ac- 
curacy and to do so as quickly as possible. Suppose that a number of arithmetic 
processors are available with which to perform the rapid solution. Apart from the 
fact that in some cases we can parcel out the evaluation of f(x, y) at a mesh point to 
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make some use of the many processors at our disposal, it appears at first sight that 
the sequential nature of the numerical methods do not permit a parallel computation 
on all of the processors to be performed. 

We say for the method of computation of the type being discussed, that the front 
of computation is too narrow to take advantage of more than one processor. (We 
neglect the possibility of parcelling out the evaluation of f as beside our main 
objective.) 

As a first step toward developing a parallel algorithm for the numerical solution 
of the initial-value problem, let us consider how we might widen the computation 
front. The predictor-corrector method of numerical integration provides a means 
for doing this. In its usual form this method of numerical integration is just as 
sequential as the single integration formula, and is not at first sight amenable to 
parallel computation on a number of arithmetic processors. Nevertheless, a slight 
alteration in the predictor-corrector mode will allow a parallel calculation. 

We will now illustrate this with a simple example. For the problem 

(11) y' f=(X,y), x > O, Y(O) = Yo. 

we lay down a mesh of increment h. The mesh points are xn = (n - 1)h, n = 1, 2, 
* ; yn denotes an approximation to y at xn. ynP and ynC are respectively the predicted 
and corrected values of yn. fnc denotes f(xn, ync) and fnP denotesf(x"', yP). Consider the 
predictor-corrector formulas 

(1.2) 1P+1 = yc + 2h [3fnc - fc-1] n C = Y c + 2 [fP+1 + f7] 
(1.2) ~~~~~22 ~ C 

The sequence of computation is --yP+l -fnP+l -Yyn+l -*f?c+l -. This is schematized in 
the following diagram 

41 

* 

If 
n-l n I n+l 

The upper line represents the progress of the computation at the mesh points for ynP 
and fnp, the lower for ync and fnc. The broken vertical line is the computation front. 
The arrows indicate influences in the computation at the (n + 1)st mesh point and 
show that calculations ahead of the front depend on information on both sides of the 
front. This is characteristic of a sequential calculation. 

A parallel mode of numerical integration is given by the following pair of 
formulas 

(1.3) Yn+ Yn- + 2hf ync n- + h (fnp + fn) 

Here the sequence of computation is schematized in the following diagram 
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_ _ / a/ P 
/ / 

n-2 n-I / n n-1I 

The arrows in the diagram show that computations at points ahead of the front 
depend only on information behind the front. This is characteristic of a parallel 
calculation. The sequence of computation is divided and each of its two parts 

(1.4) yn+i -nfl > C YfnC 

may be simultaneously executed on separate arithmetic processors. 

2. General Formulation. In this section we describe a general class of numerical 
integration methods which can be executed in parallel on 2s processors, s = 1, 2, 
We will also state and prove a theorem which guarantees the convergence of the 
solution of such a 2s computer method to the solution of the differential equation as 
the mesh increment tends to zero. Minor modifications of our proof furnish con- 
vergence theorems for standard predictor-corrector methods as well as numerical 
methods for vector systems in which different equations in the system are approxi- 
mated by different difference equations or by different combinations of predictor- 
corrector pairs or single open formulas. 

Corresponding to the initial value problem (1.1), a 2s computer method, s = 1, 
2, * , of parallel integration may be defined as follows. Let yv be an s-vector, 

(2.1) = (Y's) ..., Y(,-1)s+1) , = 1, 2, * * 

where yn, n = 1, 2, * is a scalar associated with the mesh point xn, where xn = 

(n - 1)h. Let f, be an s-vector 

(2.2) f = (fY8, . * f(P-1)s+1) 

where fn = f(xn,yn), n = 1, 2, * .. All of the quantities yn, fn, n = 1, 2, * - , yp and fp 
will also appear with a superscript p, with fnP = f(xn, ynP), n = 1, 2, ... , yP = 

(y'8,...)t, and fpP (f, )t, P = 1, 2, 
Let IMI denote the determinant of a matrix M; let 

Ao*, Am I Amp B,, B P) ,u ... k with lAol 5 O and IA PI # O 

be s X s matrices, and consider the following explicit system of difference equations 
for y^P+? and yv, where BoP = 0: 

k k \ 

(2.3) A opyvp 1 + A lpy p + E? A ,,Pyp+ _,, + h B lpf^p + E B,jsfpf+ 1y = 0, 
;i=2 ;i=2 

k k\ 

(2.4) AAoy + Ao'yvp + E A,y-,A + h BofUp + EB,fp, = 0, 

= 1,2 , * 
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Let w, denote the s-vector whose components are the exact solution of the 
differential equation at x = hps, h(vs - 1), ***, h[(Y - 1)s + 1]. Let YP 1 and y, be 
the solution of the difference equations (2.3) and (2.4), respectively, for vectors yP+ 
and yv, respectively, when all of the remaining y, and y,P are replaced by w, 

Let 

(2.5) yp = (Y+1, YV) , wv- (wr wI) , = (f?1,f f 
be 2s-vectors and let 

Ao= 
(A0 

) 
0 A (A A 2) 2 A = (0 AP?) 0= 0 A0 Al 0AmA10 O Ao Ao* Al 0 A, 

(2.6) 2, k 

WI = Bi ? 
2 7 ) 0,=( B+1+,, 

Bo B1 0 B, 

be (2s X 2s)-matrices with Akp+i = BP = 0. 
With this notation the difference equations (2.3) and (2.4) may be writteni as 

k k 

(2.7) E ZA , +hZ Jhf, h= O, (v= k+ 1,k+ 2, ...) 

where AI 0. Denote by (C)q,r, q, r = 1, ***, 2s the components of a (2s X 2s)- 
matrix C, by (V),, r = 1, **, 2s those of a 2s-vector 7, and by (v)r, r = 1, *.*, s 
those of an s-vector v. Then, a typical term of (2.7) is 

s ~~~~~~2s 

(2.8) (BjfJ_)q = E (BA)q,r(ff-pA)r + r (2.8) r=1 r=8+l 

I I *r-k, q1,* ,2s. 

Since A:ol # 0, we can for purposes of computation invert Ao in (2.7). Then the 
difference equation (2.7) can be solved for each of the 2s components of the vector y. 
simultaneously on 2s arithmetic processors. Each step in the calculation consists of 
the additions and multiplications required to form the linear combinations dis- 
played in (2.7) as well as the 2s evaluations of f, one at each of the components of 
y, and the appropriate value of x. 

The class of formulas described by (2.7) is thus tailored for parallel computation. 
We now determine which among them are stable and convergent as well. 

Let A(z) and B(z) be polynomials in the complex variable z with matrix coef- 
ficients given by 

k k 

(2.9) A (z) = 7 Zk- (z) = k- 
A=0 JA=1 

Definition. The difference equation (2.7) is consistent if 

T(1) = OandB(1) + sA'(1) = 0 

where' = d/dz. The qth row in the difference equation (2.7), with the superscript p 
deleted wherever it occurs, may be written as 

2s k 2s k 

(2.10) E EZ( 1) qr(,irr_&)r+ h S 1 (&) q,r(fj-it)r = 0 , q = 1, 2, *.,2s. 
r=1 p=O r==1 J=1 
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This represents a linear multistep difference equation of step number (k + 1) s - 

p(q) - 1 for yn where (p(q) = min r such that (A) q, r 0, r = 1, *. , 2s. 
Definition. If the difference equation (2.10) is consistent for each q = 1, ***, 2s, 

then the difference equation (2.7) is said to be row-wise consistent. 
Definition. The polynomial jA(z)f satisfies the root coindition if all of its roots 

are in the closed unit disc and those of modulus unity are simple. 
Let 

y ̂  y P Vy)t 

Then the local truncation error for (2.7) is given by 

e, = y,- W. 

Hypothesis. We assume henceforth that f(x,y) is continuoiis in x and Lipschitz 
continuous in y with Lipschitz constant 1. 

Let us confine our arguments to the fixed interval 0 < x < 1. In this case we 
may introduce the modulus of continuity t(3) of y'(x) as follows: 

(2.11) t(3) = max Iy'(x*) - y'(x) I, Ix - x*f < 3, x, x* E [0, 1] 

For use below we introduce two sets of scalars Oi and Oi', i = -s,-s + 1, , 
0, 1 ... by means of the following relations 

(2.12) Y'(xn- j) = y'(Xn) + f iS (ih) 

(2.13) Y(Xn-i) = Y(Xn) + ih[y'(x.) + f ' (ih)] 

We now state and prove a lemma concerning the size of the local truncation error. 
LEMMA. If the difference equation is consistent or row-wise consistent, then 

e,= o(h) 

as h tends to zero. 
Proof. Let uf be the 2s-vector (1, 1 * t, T)t Then 

k k 

- A0eo = Z AywV_ + h E 7BLW_ 

k k 

(2.14) = ZA,wV_k + sh Z (k - u)AT,[W'k + - (k,u))((k A)sh)] 
jA=O jA=O 

+ h 7 B4[W1k + U0(k-y),t((k - A)sh)] 
JA=1 

Then since Bo = 0, 

k _k 

(2.15) -AOe = ZAyWL_k + h E [7 + (k- A)sAm]w_k + o(h). 

From this we see that consistency and TI of # 0 gives 

e, = o(h). 

To obtain the same conclusion from row-wise consistency, we proceed as follows. 
Let (Wp-k)q be the qth component of Wvpk. Then, by Taylor's theorem 
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(2 .16 ) W^_k = (W-k ) sU + h (w_k ). (8 71 + h {s-1G~(s-1h 

-s 1 (-s )1t(sh) hI 

(2.17) W-_k (Wv-k)5U + ( ) 
\ (sh) I 

2s 1 

Wv-k = (Wv-k) 2ii + h (wi.ik)28 ( 7) 
(2.18) 0 

+ (2s-1)O2s_l((2s-1)h)) 

0 

and 
6928-1B((2s -1)h)\ 

(2.19) w_k = (Wv-k) 28U + ) 

Let -y be a variable which takes on the values one or two. Inserting (2.16) and 
(2.17) into (2.15), or (2.18) and (2.19) into (2.15), gives (2.20) with -y = 1 or 2, 
respectively. 

k zS -1 

- = ZIM(w-_kkSi + h E O(WPkks N w 
M4=0 M40K 

(2.20) k (-y 2)s 

+ h E [7y + (k - I)sAm](Wf-k) sU + o(h) . 

Then 

2s k 2s k 

(ATOe, )q = (Wv-k),ys X (A ) q,r + h (Wv_k)y s X (M) q, r 
r=1 1u=o r-1 1u=o 

(2.21) 2s k 

+ h(Wv-k)es Z Z [(k-)s + s- r] (4) q,r + o(h) . 
r=1 1u=0 

Let 

(2.22) y , < q < s, 
= 2, s + 1 < q < 2s. 

Then an inspection of (2.6) shows that row-wise consistency gives 

(2.23) (-Toev)q = o (h) . 

This and A0ol # 0 implies the lemma. 
We now state and prove an auxiliary lemma dealing with polynomials which 
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obey the root condition. 
LEMMA. Let the polynomial JM(z)I =I Ek=0 M,,Zk-p, IMol # O, where the M, are 

matrices, obey the root condition. Then the matrix [zkM(1/z) 1- is analytic in a neighbor- 
hood of z = 0. If M,, ,u = 0,1, * are matrices given by 

kM ~ ~ 00 (2.24) [ -1 : mX 
, 

then 

(2.25) max JIMAII = M < oo 
A 

Proof. Since ZkM(1/Z) = EkZ- MMzA and IMol # 0, it is clear that [zkM(/z)]-l 

is analytic in a neighborhood of the origin. Since IzkM(1/z)f = z2skIM(1/z)f, the root 
condition locates the roots of the polynomial IzkM(1/z) I outside the open unit disc, 
and those on the unit disc are simple. Since 

(2.26) [ZkM(1/Z)]-l = [matrix of polynomials]/|zkM(1/z) , 

it suffices to show that the power series for the reciprocal polynomial I zkMM(1/z) 1-l 

has bounded coefficients.' We omit the proof of this fact since it consists of a straight- 
forward computation. 

Now let us define the accumulated truncation error 

(2.27) e = - w . 

We can state and prove the following theorem. 
THEOREM. Let the difference equation (2.7) be consistent or row-wise consistent and 

let it be solved with compatible initial data; i.e., with e, = W-W^, where 

(2.28) = o(1) v = 1, ,k, ashO. 

If 1A (z)I satisfies the root condition, then 

(2.29) = o(1), v = 1, ..., {1/sh} 

Here, the last symbol denotes the integer part of 1/sh. 
Proof. With the two lemmas just established, the proof follows along the lines of 

the scalar case as in [4]. We omit the details. 
Remark. The notion of row-wise consistency which we have introduced here and 

the use of the root condition on the determinant [A (z) I are the two ingredients of the 
convergence theorem proved in this section. These are not the only hypotheses re- 
lating to consistency and stability which could be made. However, we have found 
these hypotheses to be particularly useful for constructing systems of parallel 
integration methods. This is demonstrated in the following section. The theorem 
given here is sufficient but not necessary for convergence. For example, the determi- 
nant of A (z) = Iz - I has a multiple root at z = 1, but, according to a theorem of 
B. Dejon [1], this matrix corresponds to a stable method. 

3. Classes of Stable and Consistent Parallel Methods. In this section we will 
derive sets of parallel integration formulas. We start with the general finite-difference 

1 We are indebted to A. Hoffman for this observation. 
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equation (2.7) and make some specializing assumptions. These assumptions enable 
us to obtain classes of systems which are row-wise consistent and whose associated 
matrices have determinants which obey the root condition. In the cases s = 1 and 2 
of two and four processors, respectively, explicit cases of these integration formulas 
are exhibited. 

A. The Two Processor Case (s = 1). Consider a combination of a single predictor 
and a single corrector formula which form a system of a generalized Adams type; 
i.e., for which 

(3.1) A()=AoZkA4zkAl; = 0, (2 < j < ?k). 

Recall that since s = 1, the A j, j = 0, 1, *, are 2 X 2 matrices, and the A j and Bj 
are scalars, denoted by aj and bj, respectively. Condition (3.1) implies aj = 0 (2 < j 
< k), and ajP = 0 (3 < j < k). As a consequence, the two integration formulas have 
the structure 

aO ynP+l + alPyIP + a2pYn4l + h(b1pfnp + b2pfn_1 + 0) = 0, 

(3.2) aoyn + ao*y P + alyn-1 + h(bofn- + b1fn-l + ***) = 0. 

For formulas of this type, fA(z)f = z2(k-1)f(Toz + A1)f. Thus, z = 0 is a root of 
multiplicity at least 2(k - 1). The two remaining roots of A (z) = 0 are the solu- 
tions of the quadratic equation fAoz + A1l = 0 or 

(3.3) aoaopz2 + (aoPai + aoa P)z + (ala P - ao*a2P) = 0. 

A necessary condition for row-wise consistency is 

(3.4) a2 = -(aop + alp); ao* = -(ao + a,). 

If we substitute in (3.3) from (3.4), we find that the solutions of (3.3) are z1 = 1, and 
Z2 = [1 + (ai/ao) + (aie/aOe)]. Without loss of generality we may normalize the 

rows in such a way that aoP = ao = 1-1. ThenZ2 = -1 + (a, + alp), a2p = 1alp, 

and ao* = 1 - a,. If we let 

(3.5) a, = 1-alp = a2p, 

in which case ao* = alp, then Z2 = 0, and the root condition is guaranteed. More 
generally,-1 < Z2 < 1 if and only if 

(3.6) -aip < a, < 2 -aa. 

The value Z2 = 1 must be excluded in order to avoid a double root of z = 1. The 
freedom in choosing ai within the limits imposed by (3.6) might be used for ac- 
curacy purposes. 

For simplicity assume finally that alp = 0. In this case a, = a2p = 1 and ao* = 0 
if (3.5) is imposed or 0 < a1 < 2 if the less stringent condition (3.6) is used. If we 
incorporate (3.5) and the other conditions imposed above into (3.2), we get 

-Yn+l + yn-, + h (blPfnP + E bpfnfi+i) = 0, 

(3.7) ? r ) 
-Y, + Yn-l + h b ofnp 

+ 
Z-1 bjfn-j) = O 
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If the bp's and b's are chosen in such a way that the order of row-wise accuracy is 
> 1, then we are assured of row-wise consistency. Notice that, if no distinction is 
made between y and yP, the second formula by itself is a closed Adams formula. The 
coefficients bjP, can be determined in the usual manner. Stability is guaranteed by 
condition (3.5), and thus convergence according to the main theorem of ?2. 

If the upper limits of summation over the f's in the predictor and corrector 
formulas are as indicated in (3.7), and if, for a given r, the b's and bW's are chosen in 
such a way that the individual formulas are of maximum order of accuracy, that 
order is the same for both formulas (= r + 1). As an example, the second-order 
formulas of type (3.7) (in which b2p happens to vanish) are 

Ynp+ = yn-i + 2hfnp, 
(3.8) 

Yn = Yn-1 + 2 (fnp + fn-1) - 

The corresponding pairs of formulas of order 3 and 4 are 

n+1 = JYn-1 + 3 (7f- 
- 

2f.-1 + 
fn-2), 

(3.9) 

Yn = Yn-1 + h2 (5fnp + 8fn- - fn-2) 

and 

(n3+1 = Yn-i + 3 (8fP - 5fn-1 + 4fn-2 - fn-3). 

(3.10) 

Yn = Yn-1 + h- (9fnp + 19fn-1 - 5fn-2 + fn-3) 

respectively. 
B. The Case of Four or More Processors. For four or more machines (s > 2), the 

coefficients of the predictor-corrector formulas (2.3) and (2.4) are s X s matrices. 
Assume again that:A = O for 2 < ,u < k, orthat A, = O for 2 < ,u < k, and A,P = 

O for 3 < ,u < k. Then IA(z)I = z2s (k1-) 1A oz + A 11 has a root z = O of multiplicity at 
least 2s(k - 1). The remaining 2s roots are those of !Aoz + A11. If Ao = -I2sX2s 

so that AoP = A0 = - IsXsl then 

(3.11) Aoz + 1 = (zIsxs -A _A2p 
-Ao* zI,x,-A1 

Let A o* = 0, and let A P and A, have the structure 

(3.12) A1P= 0 ? Al=lo OX 
.~~~~~~~~~~ . . . 

O X O 5OX 
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where crosses represent entries that need not vanish. For :Ao = -I2sX2s it follows, 
from (3.12) and from the consistency requirement for the last row of the corrector 
formula, that the lower right-hand corner element of A1 is unity. The indicated 
structure of A 1P and A1 gives tAoz + Al| = Z28-l (Z -1) and thus IA (z) I has a root 
z = 0 of multiplicity (2sk - 1) and the single (principle) root z = 1. Thus IA (z) I 
satisfies the root condition. Row-wise consistency is guaranteed if the coefficients 
are chosen in such a way that the order of accuracy of the formulas represented by 
the individual rows upon identifying yP and y is >1. The most general set of formulas 
satisfying all the conditions imposed above is of the form 

s s 

-((P+l)s-q+l + E (AlP) q r8ps- r+ 1+z (A2P) q, ry(v-) s-r+ 1+h(... ) = 0 (3 13 ) r=q+l r=l 
(q = 1, 2, *.. , s), 

y's-q+l+ 4E (Al)q,ry(pv-)s-r+l + h( .) = O0 
(3.14) r=q+l (q=1,2,* ,s-1). 

-Y(y-l)s+l + Y('-2)s+l + h( ) = 0 
They can be thought of as obtained from formulas 

s 

-Y(P+l)s-q+l + (A1P) q, ryps-r+1 
r=q+l 

(3.15) + 
Y's-q-i-i + E (A2p)q,rY(P-1)s-r+l + h E (Cp)q,jfvsj+l = 0 , 

r=l j=l 
(q 1, 2, .. Is), 

s.. 

-yvs_q+l 
+ E (A 1)q,ry(v_l)s-r+l + h E (C)q'3f'vs_i+l = 0 

r=q+l j=l 

(3.16) (q= 1,2, ,s- 1), 

-Y(y-l)s+l + Y('-2)s+l + h E (C)S,jfps?j+l = 0 j=1 
respectively. Here, C and CP are rectangular matrices of s rows and as many columns 
as are needed; the elements of C and CP are those of the BA's and B,P's taken in ap- 
propriate order. The upper limits of the summations over the f's in (3.15) and (3.16) 
are related to the row-wise order of accuracy and, in general, depend on q. 

The formulas considered above are particularly simple if we let A 1P = 0. Methods 
(3.17) and (3.18) listed below are of this type with s = 2. In addition, they have the 
properties (A2P)1,2 = (A2P)2,2 = C2,1 = 0, which are discussed in ?4. Within each 
method, the order of accuracy is the same for all rows and is O(h) and 0(h2), re- 
spectively, for the two methods: 

Y2n+2 = Y2n-2 + 4hf2Pn 

(3.17) Y2n+l 
= 

Y2n-2 
+ 3hfp2n 

Y2n = Y2n-3 + 3hf2n, 

Y2,,-l = Y2n-3 + 2hf'2n_ 1 
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Y2n+2 = Y2n-2 + 4hf2n, 

Y2n+1 = Y2n-2 + 2 (f 2n + f2-1), 
(3.18) h 

Y2n = Y2n-3 - (3f2n -9fp2n-1) 

Y2n-1 = Y2n-3 + 2hf2n_2. 

4. Discussion and Numerical Results. Open linear multistep methods have the 
advantage that they require a minimal amount of work per integration step (one 
single evaluation of f(x, y)). However, their asymptotic stability is strongly re- 
stricted, and they force us to use a relatively small h. Therefore, the over-all amount 
of work in carrying the integration over a given interval may be large, nevertheless. 
Closed formulas are more stable and permit the use of larger h's but, in general, 
require the solution of functional equations at each time step to obtain the new 
value of the dependent variable. A predictor-corrector (PC)-scheme appears to 
give a good compromise between the two types of formulas. Although the amount of 
work per step is larger than for the open formula (at least two evaluations of f (x, y)), 
a PC-scheme is considered advantageous from an over-all point of view since it is 
normally much more stable and, with the same step number, somewhat more 
accurate than an open formula. 

If a parallel PC-method for 2s processors gives the same accuracy as a sequential 
scheme with the same step size, it is 2s times as fast. If the parallel scheme is less 
accurate than the sequential one, it must be used with a step, hp, which is smaller 
than the step h, used in the sequential scheme in order for the accumulated error to 
be the same; i.e., hp = ph8, p < 1. The quantity 2sp, which we henceforth denote as 
1, is called the speed increase factor for the parallel method. 1 is the number of 

times faster a parallel scheme is, compared with a sequential scheme of the same 
accuracy. Clearly, a parallel scheme loses its usefulness if 1 > 1. 

Methods (3.8), (3.9), and (3.10), to be referred to as P1co, X = 2, 3, 4, respec- 
tively, where the digit 1 indicates the value of s and X is the row-wise order of ac- 
curacy, have been tested numerically with equation 

(4.4) y= - y-wire sin wrx, y(O) = 1 + r, 

which has the exact solution 

(4.5) y (x) = e-(r + cos wirx). 

The calculation was done from xo = 0 through xn = 1, with h = n-1, and n = 24, 
48, 96, and 192. The accumulated truncation error was printed out at various values 
of x (the influence of the round-off errors was largely eliminated by using double 
precision arithmetic). With r = 0, the error at x = 1 is plotted as a function of h in 
doubly logarithmic fashion, for w = 0 in Fig. 1, and for w = 6 in Fig. 2. The results 
are compared to those obtained by serial predictor-corrector methods of corre- 
sponding order (referred to as Slco, co = 2, 3, 4,); i.e., by the Adams pairs 

(4.6) p h 
(3fn- fn1) 

Y 
Yn+1 = Yn + 

h 
(fP+ + fn) - 2If +2n1 
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Yn+= n + (23f, - 16fn-1 + 5fn-2), 

(4.7) 
2 

Yn+ - = Yn + 
h 

(5f?p+l + 8fn -fn-1), 

and 

YP+1 = Yn + 
h 

(55fn - 59fn + 37fn-2 9f,-3) 

(4.8) 

Yn+j = Yn + 24 (9fp+1 + 19fn - 5fn - + fn_-2) 

respectively. The limits of usefulness at which 1 = 1; i.e., p = -, are identified by 
Llco, = 2, 3, 4. 

10-4 

lo-67 

10-7 / S12 0 

10-86 

192 96 48 24 
R 1 

FIUE10w rcsos ooclaoycs 
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We can observe a rising sensitivity to h for increasing w (i.e., an increasing slope 
of the curves). Clearly, this effect is even more dramatic as far as the frequency w is 
concerned. While for w = 0, there is a considerable improvement in accuracy as co 
increases, the lowest-order methods are the best for w = 6, except for very small h. 
This exhibits the well-known fact that low-order formulas may perform better with 
very irregular data than high-order ones, except for extremely small values of h. 
Steps of such a small size would be undesirable for practical purposes. 

In practically all cases we have 4 = 2. It is true that, for w = 0, the increase in 
speed obtained in using P12 instead of S12 can be destroyed by replacing S12 by 
S13, since S13 gives the same accuracy as P12 with an h more than twice as big as 
that used in P12. But then again P13 beats S13 with 1 = 2, etc. For w = 6 it seems 
impossible to beat the performance of a given parallel method by a serial method of 
higher order except possibly for steps which are much smaller than those used in 
the figures. 

10-3 - / 

L13 L14 S137 P13 

/ S14 P14 

10-4 / 

L12 /~~S1 

/~~~~~~ 

_oro . 

/92 96 48 24 
h- 

FIGURE 2. TWO processors. High frequencey case 
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As examples of methods for four processors, formulas (3.17) and (3.18) (referred 
to as P2w, w = 1, 2, respectively, in accordance with the code used in the previous 
subsection), have been applied to (4.4) as in the two-processor case. The results, as 
well as the limits of usefulness, L2M, corresponding to D = 1 or p = 4, are plotted, 
in Fig. 3 for w = 0, and in Fig. 4 for w = 6, and compared to the sequential Adams 
PC pairs, 

(4.9) UP+l = Yn + hfn n Yn+1 = Yn + hfp+1, 
and (4.6), i.e., Slo, X = 1, 2, respectively. For w = 0 we have 1 2 when co = 1, 
and b > 4 when co = 2. Thus, P22 is much more accurate than S12 with the same 
step size, and for that reason it was unnecessary to plot L22. For w = 6, we found 
a 4 with co = 1, and 3 with co = 2. 

1o-2- P21 
L21 SI 

S 12i . 

10-3 - - 

w 

P22 

io-5 

io6 

10-4 - 

I ~ ~ ~~~~~~~~~~~~~~~~~~I 

92 96 48 24 
h 

FIGURE 3. Four processors. Nonoscillatory case 
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Appendix. 
Parallel Second- and Third-Order Runge-Kutta Formulas. Parallel second- and 

third-order Runge-Kutta formulas have been derived by a modification of Kopal's 
[5] approach. In a standard serial Runge-Kutta method of order w, the integration 
step leading from yo to yi consists of computing substitutions, 

ki = hf (xo, yo), 
(A. 1) n-1 

kA, = hf xo + an,h, yo + _n,jkj , (n =2,*** 

and then forming a linear combination, 

L 21 

10-2 '2 P 

/// I~~~~~~ 

///~~~~~~ 
//~~~~~~ 

Cr_ ~~~~P22 / 
a:0/ w~~~~~~~~ 

10-4 

192_ 96 48 24 
h / 

FIGURE 4. Four processors. High frequency case 
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(A.2) Y, = yo + E Rjkj 
j-1 

with appropriate values of a., Oj, and R,. 
In the parallel computation of a third-order approximation yi (3), first- and second- 

order approximations, yo(l) and yo(2), respectively in addition to yo(3), are involved. 
Thus in order to continue the calculation, yi(1) and yi(2) as well as yi(3) have to be 
computed. As a consequence, the third-order parallel method gives a second-order 
parallel scheme as a by-product. For the reasons explained below the formulas of the 
parallel schemes have the structure: 

kA = hf (xo, yo(') 

Y1) =yo +k1 
for the first-order approximation. This is identical with the standard serial first-order 
case. 

ki (2) = ki (= hf (xo, yo ) )) 

(A.4) k2 = hf (xo + ah, yo(1) + Oki(2) ) 

Yi(2) = R1, )k1 I + R2( )k2 

for the second-order approximation. 

ki 3) = ki , 

(A.5) =k2, 
k3 = hf (xo + a1h, yo(2) + f3lkP(3) + -y1k2(3) ) 

(3)= R1(3k3 3)+ R2(3 )k23 -+3 R33 )k3 

for the third-order approximation. 
Formula (A.3) needs no explanation. In formula (A.4) k1 and k2 are computed in 

terms of yo(l) which is accurate to O(h) instead of yo(2) which is accurate to 0(h2) and 
which would be used in a serial second-order method. Nevertheless, k1 and k2 are 
accurate to O(h2) since thefs are multiplied by h. According to Kopal, y1(2) given by 
the last of equations (A.4) is O(h2) if RI(2) = 1-(2a)-', R2(2) = (2a)-', and c3 = a, 
where a is a parameter at our disposal. 

In (A.5), k3 is computed from a yo(2) and k1 and k2, all of which are O(h2). As a 
consequence, k3 is O(h3) for the reason indicated above. In order that yI(3) be accurate 
to O(h3) in this parallel mode, i.e., in order for the O(h2) terms to drop out, the first 
of equations (IV-L-34) of Kopal must be split into R1M3) + R2(3) = 0, R3(? = 1. 
With the following choice for a 

(A.6) a = 2(1 - 3a12)[3(1 - 2ai) 1 

there is a one-parameter family of solutions: R1(3) = (2ai - 1)(2a)-', R2(' = 

(1- 2a) (2a)-', R3(3) = 1, yI = (6a)-', and ,3i = ci - (6a)-I. If in particular we let 
R1)= R3(3) for symmetry as suggested by Kopal, then R1I3) = 1, R2() =-1, R3(? 
1, R1I2) = -5, R2(2) = 6, a = = 1/12, ai = -7/12, f3l = 17/12, and ya = 2. 

Coefficients of more similar magnitude are provided by the solution: R1I( = 
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(2 -, 3)-i, R2(3) = -(2 -, 3)-1, R3 (3) =1, RP(2) = R2(2) = 2-1, = a = 1, al = 2-1 
+ (2 - 3)-', f-3-1 + (2 ^ 3)-1, and -y1 = 1/6. 

The parallel character of the present formulas results from the fact that any two 
methods, represented by formulas (A.i) and (A.j) respectively, where i 5 j, i, j 3, 
4, or 5, have the property that (A.i) is uncoupled from (A.j), but not vice versa, if 
and only if i < j. If we let (A.4) and (A.3) run ahead of (A.5) by one and two steps, 
respectively, we get (A.7) 

kl n+2= hf (Xn+2, Yn 2), 

(1) (1) i 
Yn+3 = Yn?2 + k1,n+2 

k2,n+l = hf (xn+? + ahd, y(l)- + aki,n+l), 

(A.7) (2) (2) 
(1 - ki,n+1 + 

1 
k2,n+l (A.7) ~Yn? 2 = Yn?i1 + a2 

(2) __ 11 
k3,n = hf (xn + aih, yn + a,-l- ki,n + k2,n 6a 6a 

Y = n 3) + (2a ) (kl,n - k2,n) + k3,n. 

The information flow is represented in the following diagram: 

y(l) 

y(2) 

/ 

rn 
- 

n'tlt n+2 n+3 

/ 

Notice the absence of information flow in an upward direction. 
The first four lines of (A.7) represent a parallel second-order Runge-Kutta 

scheme. (A.7) as a whole, with a(al) defined by (A.6), defines a third-order method 
of the same type. The second-order scheme involves two evaluations of f, and some 
additional arithmetic, which could be carried out simultaneously on two processors. 
Similarly, the third-order scheme lends itself formally to a three-processor calcula- 
tion. Unfortunately, the stability analysis for y' = - Xy, X = const > 0, shows that 
both schemes are weakly unstable in the sense that the determinant of the amplifica- 
tion matrix has a double root, respectively a triple root at z = 1. The schemes thus 
lead to an error that grows linearly with n as n -* oo and h -O 0 for xn, = nh = con- 
stant. This behavior was confirmed by unfavorable numerical results in a test case. 

The difficulty is due to the one-step nature of the formulas with respect to their 
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y-entries which are the only ones that contribute to the discussion of stability for 
h -O 0. In the linear multistep methods, this difficulty can be overcome by using 
formulas whose step number with respect to y is at least two. This makes back- 
coupling of the predictor to the corrector possible through information lying behind 
the computation front, and so does not disturb the parallelism. We expect that a 
similar kind of back-coupling may be devised in the Runge-Kutta case. 

IBM Watson Research Center 
Yorktown Heights, New York 10598 

1. B. DEJON, Numerical Stability of Difference Methods with Matrix Coefficients, RZ 198, Dec. 
15, 1965. 

2. C. W. GEAR, "Hybrid methods for initial value problems in ordinary differential equations," 
J. Soc. Indust. Appl. Math. Ser. B. Numer. Anal., v. 2, 1965, pp. 69-86. MR 31 #3738. 

3. PETER HENRICI, Error Propagation for Difference Methods, Wiley, New York, 1963. MR 27 
#4365. 

4. PETER HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New 
York, 1962. MR 24 #B1772. 

5. ZDENEK KOPAL, Numerical Analysis. With Emphasis on the Application of Numerical 
Techniques to Problems of Infinitesimal Calculus in Single Variable, Wiley, New York; Chapman 
& Hall, London, 1955. MR 17, 1007. 


	Cit r15_c17: 


