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By R. Bruce Simpson 

1. Introduction. Several authors have described a fundamental solution for the 
five-point finite-difference operator which approximates the Laplacian differential 
operator in the plane, and its asymptotic relation to a fundamental solution of the 
Laplacian has been known for some time [3], [7]. Recently an explicit bound for 
the difference between these two functions has been given by Mangad [6]. In a 
paper, [5], in which he estimates the difference between the Green's functions of 
the Dirichlet problem over a rectangle for the Laplace differential operator, and a 
Laplace difference operator, Laasonen shows how such estimates may be used to 
derive convergence rates for finite-difference approximations to Poisson's equation 
under very mild restrictions on the inhomogeneous term. It is the object of this 
paper to establish similar estimates to those of Mangad's for fundamental solutions 
of the biharmonic differential and difference operators which will enable analyses 
similar to those of Laasonen's to be made for biharmonic boundary value prob- 
lems [8]. We consider any bounded region of the plane, and a square grid of mesh 
size h covering the region. We construct a fundamental solution for the biharmonic 
operator in the region, and by an analogous procedure, we construct a discrete 
fundamental solution, defined at the grid points in the region, for the thirteen-point 
finite-difference operator which approximates the biharmonic operator with trunca- 
tion error of order 2 [4]. The constructions are made so as to enable us to estimate 
the difference between these two functions as the mesh spacing varies. 

By first extending slightly the estimate of Mangad to give a bound for the dif- 
ference between the first divided differences of the continuous and discrete funda- 
mental solutions to the corresponding Laplacian operators, we can obtain a similar 
estimate for the convergence of the first differences of the discrete biharmonic 
fundamental solution to the differences of the continuous one. The manner of ex- 
tending these results to certain polyharmonic difference operators will be apparent 
from the constructions used here. 

2. Preliminaries. Points of the plane, the set E2, will be denoted by vectors x, 
with coordinates in a rectangular coordinate system (xl, x2), and the length of x 
will be given by IxI = (x12 + x22)112. We shall indicate the mesh points of a square 
grid of mesh size h covering the plane and such that the coordinate axes are grid 
lines by Eh, and the points of Eh will be denoted by vectors, P, written as capital 
letters. For a region D of the plane, we define a corresponding set of grid points 
by Dh=D 7 Eh. CQ(X) is to be the open disc of radius e centered on x, and Sa(x) 
is the square of side length a, oriented as parallel to the grid squares, and centered 
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on x. For a function V(P1, P2), defined on Eh, we introduce the first divided dif- 
ferences 

hP V(P1l p2) V(PI1+ h, P2) - V(P1 P2) 
h 

and 

hPV V(P1, P2) _V(P1, P2) - V(P1, P2 - h) 

and the discrete Laplacian difference operator 
2 

(1) AhV(P) = E ahPiAhPV(P). i-i 

The set N1(P) _ {QIQ C Eh, IP - Q h} is the set of arguments at which V(Q) 
is required to form AhV(P). For a set of grid points Dh, Ni(Dh) I{QIQ E Eh, 

Q C N1(P) for some P C DhA. The thirteen-point discrete biharnonic difference 
operator [4], denoted by Ah2, can be defined by adopting a property of its con- 
tinuous counterpart, A2, i.e. 

(2) Ah 2V(P) - Ah(AhV(P)); 

evidently N2(P) _ N1(N1(P)) is the set of arguments at which V(Q) is required 
to form Ah2V(P). 

While the following device for estimating certain discrete sums has been used 
by Bramble and Hubbard, [2], there appears to be no explicit reference for it. 

LEMMA 1. Let f(x) be a nonnegative function, integrable over a region R' in E2, and 
subharmonic in a subregion R. Then 

h2 T f(T)T 
4 
X fdA 

for any region D such that T E Dh, Ch?2(T) C R C R'. 
Proof. The proof is an application of the solid mean-value inequality for sub- 

hannonic functions, which in two dimensions is 

f(P)?-i21f fdA. 
7rr Cr(P) 

In particular, taking r = h/2 and P C Dh 

(3) f(P) 
4 

-1 fdA < 41 fdA; 
xrh h^/2(P) 7rh sh(P) 

multiplying (3) by h2, and summing over Dh proves the result. We will use multi- 
indices a = (ail, ac2) with lal = al + cr2 and the symbol Daf = cia1f(x)/Oxiaiax2as 
to describe derivatives. 

LEMMA 2. Let f(x) be harmonic in a region R, so that f(x) = Re F(z), where F(z) 
is an analytic function of z =-X + iX2 in 1R. Then 

IDafl ? dzF(a in R1. 
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Proof. First let us consider the case when a = (al, 0). Then, since the partial 
derivatives are taken along the real axis, 

0a Re F(z) Re da'F(z) 
axial dzal 

so that 

I Daf =; Re da F(z) < da F(z) I Daf 
Redzal dza'l 

Now let g(x) = Im F(z) = Re (-iF(z)) in R. Then, for a2 odd, a2 = 2m - 1, 

- 

(-1 )m a9~ 
aX2a2 Oxca2 

and 

ala _ a ag dlal -iF (z) F(< d )i F() 
agx1ax( 2~ ax' la- dz IadzIa 

On the other hand, for a2 even, a2 = 2m, 

d = (-1 )M 
Oa 

aX2a2 aXia2 

and, again, 

1 d l 'drs' t | dxiaI la< l d <X 
0al 0la_ af da F(z) 

Xa0X2 ax2 - aX 1aI = dz ai 

From this lemma, we conclude directly that for x 5L s, there is a constant k(a), 
depending only on lal, such that 

D' log Ix-sIs _ k (a) 
Ix - sl a 

In deriving the estimate of this paper, we shall use k and K to denote generic con- 
stants which are independent of h (their appearance in successive inequalities does 
not represent the same value, but only the fact that there is some constant for 
which the inequality is valid). 

Let A (P; Q) = A (P1, P2; Ql, Q2) be a function of two grid points P and Q, and 
let Lh stand for either Ah or Ah2. Then A (P; Q) is defined to be a fundamental solu- 
tion for Lh on the set of grid points Dh C Eh if it is defined on NV2(Dh) X N2(Dh), 
and satisfies both 

LhPA (P; Q) =- P Q 
6 P;Q) Pe(-Dh; QeCDh. 

LhQA(P; Q) = a( Q), 

Here 8(P; Q) denotes the Kronecker delta symbol, and the subscript on the op- 
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erator indicates that the operator acts on A (P; Q) as a function of that variable 
which depends parametrically on the other. 

It is shown by McCrea and Whipple [7], that the function defined for m and n 
integers 

(4) g(m, n)-2 t lj -exp (-IImly) cos ns d 

where y lies on the branch of the root of cos s + cosh y = 2 which varies between 
O and Icosh-' 31 could be used to define a fundamental solution, rh(P; Q), for 
- Ah, in Eh; 

(5) rh(P; Q) 9(- h 1 'h 47r- log 2 - C 

where Ce is Euler's constant. If we denote the radially symmetric fundamental 
solution of the Laplacian (-,A) by 

(6) -y(x; )= -1 log Ix - t 

then Mangad has shown [6] that 

(7) I y(P; Q) - rh(P; Q)t -< 54(h/lP - Q)2. 

Consider a bounded subset D of E2, and a square z the sides of which are grid 
lines and such that 73 lies in the interior of T; and let Gh(P; Q) be defined on 2h X lh, 

for any Q E 2h, by 

-AhpGh (P; Q) = (P; Q) P E h - (ar)h, 

Gh(P; Q) = P P C (32;)h 

(i.e., Gh(P; Q) is the discrete Green's function for Ih). From (7), it can be seen that 
we can choose positive constants ko and ki, depending on the distance d from 92; to 
D, such that for Q E Dh, h < d/3, P E (O )h 

Ho(P; Q) - -Gh(P; Q) - ko + rh(P; Q) < 0 

Hj(P; Q) - Gh(P; Q) + kl + rh(P; Q) > 0 . 

Since AhPHi(P; Q) = 0, i = 0,1, for P E 2h- (aZ)h, by the discrete maximum- 
minimum principle [1], 

Gh(P; Q) - k r? (P; Q) _ Gh(P; Q) + ko 

i.e., 

rh(P; Q) I < Gh(P; Q) + k2, k2 = max (ko, k). 
Laasoiien [51 has shown that for a- side length of z 

Gh(P; Q) -< Gh(Q; Q) _ .354 (log (a/h + 1)) 

which allows us to state 
LEMMA 3. For a given ho and bounded subset D of E2, there is a constant k2 depend- 



A BIHARMONIC FINITE DIFFERENCE OPERATOR 325 

ing on ho and D only, such that for h < ho, 

max I Ph (P; Q) ? _ .3541 log hI + k,. 
P,Q EDh 

The technique of Mangad, [6], in obtaining (7), can easily be modified to prove 
the following 

THEOREM 1. There exists a numerical constant c such that for IP -Q > h, 

I 1hFh(P; Q) - 3hY(P; Q)| _ ch2/|P - Q|3 

where ah denotes any first difference with respect to either Pi or Q , i = 1, 2. 
We shall indicate the necessary modifications of Mangad's proof of (7), and we 

observe that while our outline is simplified to show only the existence of c, a more 
lengthy calculation could be performed in a similar manner to provide c explicitly. 
Since 

95hQjih(P; Q) = -hPjih(P; Q) 

(9)YhQi(P; Q) = hPiY(P; Q), 

we may consider only differences with respect to P. Furthermore, from (5), and 
the symmetries of g(m, n) [7] it can be seen that it is sufficient to consider Q = 

(0, 0) - 0, and P to be in the sector of the plane characterized by 

(10) O?P2 _ P1, P # (O, O) or (h, O) . 

However, it appears to be necessary to consider the P, and P2 differences sep- 
arately. From a standard Laplace transform, for Pi = mih, 

bhPPY (P; 0) = _h | (COS m2s-cos (m2 + ) -m>msd 

Hence, with (4), we have, for cos s + cosh y = 2 

27rwIhP, (Ph - -Y) (P; 0) = ' f (cosm2s-cos (m2 + 1)s)e m,ds 
(11 hsinh y 

fO e -mls 
-] (cos m2s-cos (m2 +1)s)- ds. 

(Here, and in the proofs to follow, we use the common notation (f ? g) (x) for the 
function f(x) ? g(x).) 

We break up the right side of (11) as 

(12) 27r|bhp,(Fh - Y)(P;0)1 ? JAI + IBI + ICj 

where 

h le(s) 

A I 7f (COS m2S Cos (mi2 + 1)) S-m 1d B = f(cosm2s-cos (e2 +d 
h ~~sinh y s 

o = (COS in25 - COS (Mn2 + 1)s)Qh dms) 
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for some choice of e in 0 < e < 1, independent of h. The estimation of terms A I 
and IBj of (12) is entirely analogous to that in [6]; we indicate how ICf, the more 
complicated term, is estimated. From Lemma 2 of [6], for 0 < s ? 1, s -s3/10 
< y < s, and a straightforward calculation shows that lim,.0+ (sinh y)/s - (3)1/2. 

Hence for some e > 0 

-my e-m1` 
(13) e - when O < s e sinh y s 

and we have 

1 J e -mly CM1a 
lCI < - s e ds 

=h o sinh y s 

I" exp m 
(14) ,,, 1 ( 10 -1 )e-m 'ds (14) h h 1 10 

2 'mex '-m's - e''ds + se 
(10 -2)h \J 10 P\1 10+ s dsj. 

10 MIS ( S3 exp (-Ml( _ 
- 

))ds + | 2e-ml ds) 

Now on (0, e) s - s3/10 _ (1 - e2/10)s, so that 

exp (-mI(s - s8/10)) ! exp (-(1 - e2/10)mIs) 

and 

_ _ _ _ _ r~co 2 \ \2 

lc< (1J0 1 S3exp (-1--mIS ds+ h 
( -e) h o \ \ 10,, 10 M)I%h 

(10-e2)h ((1 - e2/10)ml) + k(e) I k I 

siInee from (10), P1 = mlh ? IP1/212* We note that the more comoplicated pro- 
cedure of [6] would avoid the uncertainty about the range of e introduced at (13) 
and would permit explicit estimation of c. 

Similarly, we have 

27rI,hp1(rh - y)(P;0) I I A'l + IB'l + IC'j 

for 

I Co92s (O m2 8 
_e(m +l)8)d 

1 J" (1 - CY)e-m 
1 

B' = - (1CO)Sl csm2sds h e sinh y 

1 l (1 i e- 
y- 1-e-Ml )d 

h o sinhe y 

and, agaiii, we will only indicate the treatment of C'. If I is used to denote the 
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integrand of C', we let S+ (S-) be the subset of (0, E) on which I is positive (nega- 
tive). Since sinh y ? y ? s- s/10, s _ y for E < 1 [6, Lemma 2], on S+ 

- I9 ,/ e-mly -t C_eM, S 

i< ( 
' ( 

) - (1 s 

e-1 /s0 emp \exp ( 10 -1- 10) 

Hence 

if k~~~~~(( ~3\ 2 
h1+ lIlds <- 

k 
(exp (M1 )- + l8 )e-Mi sds 

h + - h ~~ 1s + 1 m0 S 

which was estimated in (14). On S- 

e___< -m s e___ -ml s 

s sinh y 

now sinh y ? sinh s ? s + (s3/3!) cosh E and 1/sinh y ? (1 - bs2)/s where b = 

[cosh E]/3!. Thus on S- 

fl - ess3\V1 -bs 2 
MI 

I< _ U -(1-exp -s + )e- 

< (e xp (s3/i0)-1) + bs (1 - exp -s + 1 e 

< ( + bs2) exp (-S + s e-Ml S < iS22e-mS 

for 0 ?s < E < 1, and 

(15) h f I ds h ks2emlsds. 

However, the right-hand side of (15) was also estimated at (14). These, then, with 
the corresponding estimates for JAI, IBI, JA'j, and IB'l and the symmetriesof Fh, 
and -y conclude the estimate. 

3. A Fundamental Solution for the Biharmonic Differential Operator. To define 
a function on E2 X E2 which is a fundamental solution for A2 in a bounded region 
D, let L be a circle centered on the origin and containing D, and let Lo be a circle 
with the same center but with radius ro equal to twice the radius of L. L1 is to be 
a larger circle than Lo, centered on the origin, with radius ri. Let f(s) e Co'(I), 
where I denotes the real line, 0 ? f(s) ? 1, and f(s) = 1 for 0 ? s ? ro, f(s) 0 
for s ? ri; we define q(x) on E2 by n(x) = f( x ) and we define B(x; t) on E2 X E2 as 

B(x; t) _= f(t)y(x; t)y(t; t)dAt . 
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For convenience in the sequel, we will assume that ri = 2ro, and we summarize 
some of the properties of this function in the following theorem. 

THEOREM 2. (i) B(x; t) is a fundamental solution for A2 in D. 
(ii) B(x; E) E C'(E2 X E2) and a modulus of continuity for any of its first deriva- 

tives is w() =Kb K log 61. 
(iii) For x # i, x, EC LO, 

A,,B (x; = AtB(x;) = (; 

(iv) For x 5 -, B(x; S) is an infinitely differentiable function of x and (, and its 
derivatives are continuous in the sense of a function of four variables when x and t 

vary in disjoint subsets of LO. 
(v) There is a constant K, depending on ro and a, such that for x $ t x, EC 

LO, lal _ 2, 

DXaB (x; )I < K(j log Ix - (! I + 1) 

Proof. (i) To see that 

JB(x; y)A20 (t)dAt = +(x) 

for all +(x) E Co0(D), we need only justify the interchange of order of integration 
in ftI I7(t)y(x; t) y( ; t) A20Q)dAtdAI and observe that (a) A2,(0) = - A(- A+()) 
(b) y(Q; t) = 7y(t; t) is a fundamental solution for - A, (c) 7(t) -= 1 on the support 
of O. 

(ii) Since 

f| n(t)-g 1 aIx - tI log it - tIdAil 
CW(x) - tf lx i 

converges to zero as e tends to zero uniformly for (x, t) E Lo X Lo, we conclude 
that 

(18) B(; t) = (t) (;) dA 
axi - Iy(x tdA 

exists on Lo X Lo. Suppose that 
/2 \1/2 

I(X~ t (Xl,p)I (Xi iX it)2 + (ti-i _ i)2 < 

then x' E CQ(x), E' E Cb(t) and 

(19) OBB(x'; ') _ dB(x; t) _ I + I21 + 1131 lx i ax i 

where, setting S = - C26(x) - C26(t) 

Il = | (t) ( y(t; x') Y(t;*t) 
- 

r(t; x) y(t; t))dAt 

and I2 and I3 are integrals having the samne integrand, but taken over C25(x) and 
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C26(t) respectively. Using Lemma 2, for (y, w) C CZ(x) X CQ(t) 

f | (t) ya (y; t) ay(w; t) dA t 

(21) -( 
7 
(t)1/t) 

dA t 
I 7( )( 

dA 
t 

< k ? < k(log X - log a) 

for X = ro + ri. We can estimate I, as follows 

tII1 < JAI + IBI, 

where, setting g(t) = y(t; t) + y(t'; t)/2, and sx + (1 - s)x' = x(s) E Ca(x) for 
O < s _ 1, 

A = f (t)g(t) -a (-y(x; t) - 'y(x'; t))dA t 
2 f ( a2'y(x (s) ; t) 

(= (Xk - Xk') n(t)g(t) - at (t) dsdAt 
(22)2 - X j1(f (t)(t) klatkati dA 

2 

Z (Xk 
g(t 

3'y (x (s) ;t) 

+ z;niq(t)g(t) O'(d(t ); t) do-t ds, 

(n1, n2) being the outer normal to aS. Now, using (21), we can estimate 

an8 (t) g (t ) d&y (x (s) ; t) dA t 
1 at j atk 

uniformly for s C [0, 1], and 

n (ty(t; t) + y(y'; t) a 7(x (s) ; t) dot 
k 2 /f tk 

< ,(log X-log 3)f do-t < K(log X-log 5). 

Since Xk - Xk'j < 6, then, IA I < K6(log X - log 8). The estimation of B is similar 
but simpler; i.e. for i(s) = st + (1 -s)t' C C- ( ) 

B s (1Y (t; t) -Y Wt; t)) -d (,y (x; t) + y (x ; t) ) dA t 2 ~~~~~~ati 

= 
(______ -2 ) t) a st) -d (y(x; 1) + y(x'; t))dA tds 

The volume integral is estimated using (21) and we have IBI < K3 (log X - log 6) 
so that, for 6 < 6o, 

IIi1 < K81log 8. 

To complete our estimate for (10), we must consider I2 and 13; however, letting 
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J be either C26(x) or C28(t), it can be verified that, for x' E Ca(x), i' E C8( ) 

(24) |z(xf; t) 
-y(d't)dA t<KaJloga1 

for a uniform constant K, using Holder's inequality. Using (24) to estimate II21 and 
II31, we have, from (19), that for 6 < 5o, there is a K, dependent on (o and X only, 
such that for I (x, t)- (x', (') I < 6 

OB(xf; OB (x; -| < K6jlog 6 

which proves (ii). 
(iii), (iv) Let A1 and A2 be two compact disjoint subsets of E2, we wish to show 

that DxaB(x; t) is continuous on A1 X A2 for every a. Let 4E- = A1 - A21 = 

infxCA ;yCA2 I- yj and take Q to be a piecewise smooth, compact curve enclosing 
A1 such that IQ - A1l > E, i = 1, 2. Let Z be the interior of Q, and we assume for 
convenience that Z C Lo, i.e. -(t) =_ 1, t & Z. From (18), it can be seen that 

(26)x; J__ I (t) y( X) y;t)dAt 
(26) Oi - x 

+ L ((x;; t;) dAt+ - -niyy(x; t)y(t; t)dot 

where (ni, n2) is the outer normal to U. For x E A1 and _ E A2, if the right side of 
(26) is differentiated under the integral signs with respect to xj, the resulting in- 
tegrals converge uniformly with respect to x E A1, i.e., using Gauss's theorem 

-Zia,; fE~ z t)y 'y(t;t)dAt 

a2(Y t) (27) + L 'y(x; t) at(t; dAt 

+ ? ni an(X; t) 7 (t; n) - na- t) y(x; t)d t. 

In particular, if we choose x 7 i, A1 = x, A2 = Q, Q = Ce(X) (27) shows that 

=xB (x; f (t) Ax-y (x; t)-y (;t)dA t 

+ f (x; t)At-y(t; t)dAt 

(+Ix aYl (x d nt) y (t; t) --an 
t) (x; t) do- t 

= LA~~~y ~.t) dot - log E &ly( t) do&t = -y (~; x) 
27reA-;x-tl=f7(t;E)at 27r Jx-t; an ft 

since -y(x; t) is harmonic for x 7 t, enabling us to employ the mean value theorem 
for harmonic functions for the first line integral above and to conclude that the 
second vanishes, proving (iii). 
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Returniing to the case of arbitrary but disjoint A1 and A2, we can continue in 
the manner in which (27) was obtained to see that for x E- A1 C Z, t E A2 

DxaB(x; ) = f 7(t)y(; t)Dxay (x; t)dA t 

(28) ? (-1)" 
' f y (x; t)Dta-y(t; t)dA t 

+ 5;i niaprD tpy (x; t)D try (t; t) 
Q; Ip+'r1=Ial_1 

? n2bp,DtP y(x; t)DtT y(t; t)do-t 

where apT bp are numerical constants depending only on the multi-indices which 
are their subscripts. Since the integrand of the line integral in (28) is uniformly 
continuous for (x, $, t) E A1l X A2 X Q, the line integral is continuous on A1 X A2. 
That the volume integrals define functions which are continuous on A1 X A2 can 
be seen from the approach taken in proving (ii). 

(v) To obtain these estimates for the derivatives of B(x; t) when x 7 (, x, t E Lo, 
we set in the proof of (iv) x = A1, t = A2 and Q2 = CQ(x), E = lx- 1/2 and esti- 
mate the various terms on the right side of (28) using Lemma 2. E.g., setting 
l = a, 

,q 7(t) DXa-y(x; t) -y(t; t) dA t 
E2-Ce(X) 

){J (t) k () Ilog t - tHdAt 
lx - tr 

?31x-(la fJo-I/ rjlog r[dI) 

< 
I 
log Vt' - ta1 1 

1~ ~ ~~~~~' Mi - l- 

sv - ~ ~~~~+ - 
I rloard 

where K depends on a and X. Similarly 

EJ 
y 

(x) (; t)D t' a(t; t)dA t _ KI 
log 

I 
X-41 +1 C(X) IX _- I 

and the line integrals can easily be shown to satisfy the same estimate, for some K 
depending only on a and X. 

4. A Fundamental Solution for the Biharmonic Difference Operator. The defini- 
tion of B(x; t) is immediately suggestive of the following construction. We define 
Ph(P; t) to be the extension a.e. of Fh(P; Q) to Eh X E2 as 

Fh(P; t) = Fh(P; Q) , t E Sh(Q), 
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and let Bh(P; Q) be defined on Eh X Eh by 

Bh(P; Q) = fn (t)]h(P; t)]h(Q; t)dAt. 

THEOREM 3. Bh(P; Q) is a fundamental solution of Ah2 in Loh. 
Proof. This result follows immediately from applying Ahp to Bh(P; Q), observing 

(2) and the fact that rh(P; S) is a fundamental solution for -Ah. 

The apparent fact that Bh(P; Q) is an approximation to B(P; Q) is given 
quantitative substance by the main results of this paper, Theorems 4 and 5. 

THEOREM 4. For any constants ho and lo satisfying 2rO > lo > 6ho, there exists a 
constant M depending on ho, lo and ro, such that for h < ho, 

(i) max IBh(P; Q) - B(P; Q)j ? l Mh2([log hj) 
P QC-I h;IP-Ql> lo 

and a constant M1 depending on ho and ro such that for h < ho 

(ii) max I Bh (P; Q) -B (P; Q) I < Mlh2(log h)2 
P,QCLOh 

where Lo is the circle of radius rO centered on the origin. 
Proof. By definition, we have 

Bh(P; Q) - B(P; Q) = fn(t)(Fh(P; t)Fh(Q; t) - 'Y(P; t)7(Q; t))dAt 

= fr (t) (]h - Y) (P; t)(h 2 )(Q; t)dA t 

+ fr (t) (h - Y) (Q; t)(-Ph + Y)(P; t)dA t 

_l I+ I2 

where I, and I2 are defined to be the two integrals on the preceding line. Since they 
are similar in form, it is sufficient to show how II,I can be estimated. We introduce 
a piecewise constant function 

'Yh(P; t) y (P; T), t E Sh(T), T E N2(P). 

'Yh(P; t) ]_ r(P; T) , t E Sh(T) I T E- N2(P). 

Then 

I, = f (t) (Y- -Yh) (P; t)(Y ? h)(Q; t)dA t 

(29) + frn(t) (-Yh - Fh) (P; t)Q '2 ])(Q; t)dA t 

Ji + J2. 

We wish to use the following observation in estimating J1. Let Ms denote a 
uniform bound over Sh(T) for the absolute value of the ith derivatives of 
?(t) E Ci[Sh(T)] and consider f(t) E C2[Sh(T)], g(t) E Cl[Sh(T)]. Then, using 
Taylor's expansions, it is immediate that 
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and it is clear that the remaining terms of (35) can be estimated in a similar fashioll, 
so that for any ho, there is a constant K depending on ho, lo and ro such that 

S?1 Kh2 |log hj for h < ho . 

The remaining two terms on the right of (33) are each sums, multiplied by h2, of 
13 terms, where each term is bounded by Kllog hl for h < ho, for a suitable coIn- 
stant K depending on ho, lo and ro. Hence, for a suitable constant K, 

(38) jJij < Kh2 Iloghl for h < ho . 

Using the estimate of g(T) preceding (35), and also (6) and (7), and Lemma 3 

( h2__ ( 109 IQ - tH 
I J21 < 54 n~'o(t)y ? 6)dAt 

TCEh-N2 ( P - T 
1 

Sh(T) 2ir 

(39) ?h 5 h2fn(t) (log9 [Q- tH I () + 
NQ54 p 2 -T1"2 \ 2 r 

+ k2 -.354 loghdA, 

< Kh21log hl for h < ho 
for a suitable constant K. This concludes the estimation of I, (Eq. (29)), but, as 
mentioned, I2 is similar in form, hence (i) is established. 

The second estimate (ii) is obtained by the same process, not using, however, 
P - Ql ? lo. If we examine the first term of (33), it is bounded by S1 of (35) 

which can be estimated uniformly, as in (36) using 

h2 E logIQ-TTH 
TCL1 ,-N2 tP - T 

? (log 4ro - log h)h 2 
< 1 K(log h)2, 

TLlhL-N2 IP- 

and the fact that (37) is already uniform in P and Q. Hence, for P and Q in Loh, 
aiid h < ho, 

Si < Kh2 (log h)2 

for a constant K depending on ro and ho. The remaining two terms in (33) are 
sums, multiplied by h2, of 13 terms, each of which is bounded, for h < ho, by 
K(log h)2, for a suitable K which depends only on ho and ro. Hence, we have the 
analogous estimate to (38) uniform in P, Q 

(41) IJ11 |?<Kh2 (log h)2 

for a suitable constant K. Similar modifications of (39) will show that 

IJ21 ?Kh2(logh)2 

for P, Q E Loh and h < ho, which, with (41), establishes the second estimate. 
We wish now to conclude our results by using Theorem 1 to establish an esti- 

mate similar to (i) of Theorem 4, for the first differences of the fundamental solu- 
tions of the biharmonic and discrete biharmonic operators. 

THEOREM 5. For ho < ro/5, there exists a constant M12, depending on ho and ro, 
such that for any first-difference operator ah, 
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P mQaLohxP-QI >5h bh(B(P; Q) - Bh(P; Q)) < M2h' log hI 

for h < ho. 
Proof. While the idea of the proof is essentially the same as that of Theorem 

4, some alterations are necessary to provide the nonuniform estimate. For any two 
points P, Q E Loh such that IP - Q > 5h, let W be a smallest square containing 
Sh(T), for any T C (CIP-QI(P) U CIP-Q(Q))h, (Ca(b) being the circle of radius a, 
centered on b as defined above). Consider the grid lines running in a direction which 
make an angle of 450 or greater with the line segment PQ, and choose a line running 
in this direction which is halfway between the grid lines of the considered direction 
and which is one of possibly two such lines that are nearest to the midpoint of PQ. 
(See Fig. 1.) This line will be labelled J, and coincides with a line of edges of squares 
Sh(T) which comprise W. It divides W into two rectangles, W, the rectangle con- 

I _ _ _ _ Iw2_ 

I~~~ r- 2LhIz X 

taining P and W2 the rectangle containing Q. Using this, 

(44) a6hB(P; Q) - ahBh(P; Q)| _ |Ifi + |I21 + jI31 

where the Ii are integrals with integrand 

'7(t)(6h(Ih(P; t) rh(Q; t)) - ah(Y(P; t)Y(Q; t))) 

takeen over t E W1, W2 and E2 -W, respectively. We proceed with the particular 
case ifh = ahQ,, the other cases being handled in exactly the same way. With 

G= {TITELh, TXE W), 
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h2 

II31 -- h IH('h + y) (P; T) (6h('h- -y) (Q; T))j 2 T EG 

I (Ph - y) (P; T)6h(Th + y) (Q; T)| 

+ 2-y(P; T)6h-Y(Q; T) h f 7 w(t)dA 
Sh2h(T) 

(45) - /h2 f Y(P; t)6hY(Q; t)7(t)dA 
Sh(T)J 

< kh2(h2 Z IlogIP Tj I + 1 I 
TEG IQ-Tj3 ?IQ T IP-T 12 

1 1 ( i ilogfIP T 
+ 1 2 +M 11 + 2" 

IQ-T2 P-T 1\P TT IQ-Tj IQ-Tj/ 

where we have used Theorem 1, (7) and (30). Using Lemma 1, and the techniques 
of the preceding proof, we have 

(46) 1I31 < kh2jlog hI/lP-Q Q. 

Turning to the remaining terms, I, and I2, we can use (9) to see that 

I2 = {th(P; t) (Fh(Q; tl - h, t2) - T'h(Q; t))/h 
W2 

-y (P; t)(-y(Q; t1 - h, t2) - -y(Q; t))/h}'7(t)dAt 

(47) = {(-h(P; t)Fh(Q; t) + y(P; t)y(Q; t))/h}7(t)dA t 
2 

+ | t (P; ti + h, t2)TPh(Q; t) - y(P; t1 + h, t2)Y(Q; t))/h} 
w3 

X 7(t, + h, t2)dAt 

where W3 is the rectangle obtained by translating W2 through a distance h in the 
direction of the negative t1 axis. We let W4 = W2 n W3 and let Z1 and Z2 be the 
two rectangles W2 - W4 and W3 - W4. We observe that the Zi have width h and 
length not exceeding 31 P - Q + h, and contain not more than 31P - Q /h + 1 
points of Eh. To simplify the following expressions, we shall assume that W U 
W3 C Lo, so that 7(t) 1 on W U W3. The modifications of the following esti- 
mates which are necessary if W U W3 is not contained in Lo can be seen from 
the procedures of the preceding proof or the last terms on the right sides of (45). 
From (47), it is apparent that 

I2 = f {-ahP 'h(P; t)T'h(Q; t) + hPy-Y(P; t)y(Q; t) }dA t 
w4 

(48) + 
I 

| Y (P; t)Y(Q; t) - 'h(P; t)'h(Q; t)}dAt 

+ f { 'h (P; tl + h, t2)T'h(Q; t) - -y(P; t1 + h, t2)Y(Q; t) }dAt. 

The integral over W4 in (48) and I, can both be treated in the following manner: 
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|I,j ? h Ph(P; T)6hT (hhS(Q; T)N( + h2 YPS (T)( ; ) hY (Q; ) t 

h2 
+ 2 TEWhN( ( + 'h) (P; T)6h(Jh - Y) (Q; T)| 

(49 ) 
2 TE w 1 h_N, (P) 

+ I (Y - 'h) (P; T)6h(Jh + y) (Q; T) + 2-y(P; T)6h7'(Q; T) 

h Sh(T) ;) y(Q;t)dAj. 

For t ? jT lQ - tj > IP -QL/2(2)1/2, - h/2, i.e. 

Qt1 < 2(2)1/2 (2)1/2h )-1 

(50) <10(2)'/2 1 k 
IP - Ql 5- (2)1/2 =P- Ql 

since IP - Q > 5h. To estimate the sum of 13 terms which is the first sum on the 
right side of (49), we employ Lemma 3, Theorem 1 and (50) 

h 
TA, 

( Ph 
(P.; 

T)6h Ph (Q; T) 
? 
+ 12 Y (P; 

t)6h(Qt)dAi) h Sh(T) 

_ 13{kh2(IloghI + 1)( I Q + ? Sch 3) 

+ IP - Q| r(-logr)dr} 

h2 logh 
= IP - Ql 

for h < ho, k dependent on ho. For T G Wlh - N2(P), I(Y + 'h)(P; T) I < 

((I/7r) Ilog IP - TII + 12) and 

36h(Fh + -y)(Q; T)| ? 216h-Y(Q; T)| + 8c 
_ 13 

< 
IP -kQ 

hence 

h2 
2 TEtw ({Y + T'h) (P; T)6h (Fh - y) (Q; T) I 2 T EWI h-N2 (P) 

+ I (Y - T'h) (P; T)>6h(h ?+ y) (Q; T)f} 

(51) 2 TEWlh-N,(P) \r 1 - TJ/ 

h 1 2 k 
?Q - Tj)fP - Ql 

h2 log hi 
=< k 

p - Q1- 
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Using (30) and Lemma 1 in the same manner as previously, it can be seen that the 
last term of (49) can be bounded by the last term in (51), hence 

(52) JIllh k _ Q, Iloghl 

for a suitable constant k. 
As the analysis of 1, would provide the necessary estimate of the first integral 

in the expression (48) for I2, we can complete the estimation of I2 by considering 
the integrals over the strips Zj; e.g. set 

I4= Y - 'h (P; t) 'h (Q;t)dA t <- 2- T'h)(P; T) h~z = 2 TEZlh 

(53) X (Y + Th) (Q; T)| + |(e - rh) (Q; T) (y + Th) (P; T)|} 

+ h y (P; t)y(Q; t)dA t-y(P; T)y(Q; T) . 
Tczlh h 2 

h(T) 

Using (7), we can see that the first sum on the right-hand side of (53) is bounded by 

kh Zh E {IP 77(2(1 log IQ - TJ ?5 

(54) 1 (254JF + IQ - T12 
21 log IP - TI + 254 

For t C Sh(T), T E Zi, the triangle inequality gives (P - tj + h/(2)1"2 > (P - Tf, 
so that for a number a, obtained by the same calculation as gave (50), 1/}P -t 
< a/lP - Tj and similarly 1/lQ - tj < a/lQ - Tj. Thus, from (30), it can be 
seeir that the second sum on the right side of (53) is less than 

(55) kh3 E I log IP lI + 2 + 
I log IQ-T|I 

Tlh IQ-TP2 lP-THIQ TI? P-TJ2 

XVe observe that 

IP - Ql( I 1) < IP-Ql Q h< IP- TI 
2 (2)1/2 5 = 22(2)1/2 2= 

and similarly IQ - T I k P - Q when T G Z%, and using these inequalities and 
noting the remarks preceding (48) we see that (54) and (55) are bounded for some 
constant k by kh2 ilog h /lP - Q ; e.g., 

h3 E I log |P - Tl I h 21 log lp_ 2QlI hhE1 
2 lo hi-Q 

T E Z: IQ- Tf12 - 
p-_Q12 T E Z,. = 'P - Q 

Since the integral over Z2 in (48) can be treated in the same manner, we have, for 
some k 

w(I2a the log gi 

which with (46), (52) and (44) shows the estimate given in the theorem to be valid 
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when 6,h = bhQ,. As mentioned, however, the other cases are not essentially different 
and so we shall consider the result proven. 
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