A Fundamental Solution for a Biharmonic
Finite-Difference Operator!

By R. Bruce Simpson

1. Introduction. Several authors have described a fundamental solution for the
five-point finite-difference operator which approximates the Laplacian differential
operator in the plane, and its asymptotic relation to a fundamental solution of the
Laplacian has been known for some time [3], [7]. Recently an explicit bound for
the difference between these two functions has been given by Mangad [6]. In a
paper, [5], in which he estimates the difference between the Green’s functions of
the Dirichlet problem over a rectangle for the Laplace differential operator, and a
Laplace difference operator, Laasonen shows how such estimates may be used to
derive convergence rates for finite-difference approximations to Poisson’s equation
under very mild restrictions on the inhomogeneous term. It is the object of this
paper to establish similar estimates to those of Mangad’s for fundamental solutions
of the biharmonic differential and difference operators which will enable analyses
similar to those of Laasonen’s to be made for biharmonic boundary value prob-
lems [8]. We consider any bounded region of the plane, and a square grid of mesh
size h covering the region. We construct a fundamental solution for the biharmonic
operator in the region, and by an analogous procedure, we construct a discrete
fundamental solution, defined at the grid points in the regien, for the thirteen-point
finite-difference operator which approximates the biharmonic operator with trunca-
tion error of order 2 [4]. The constructions are made so as to enable us to estimate
the difference between these two functions as the mesh spacing varies.

By first extending slightly the estimate of Mangad to give a bound for the dif-
ference between the first divided differences of the continuous and discrete funda-
mental solutions to the corresponding Laplacian operators, we can obtain a similar
estimate for the convergence of the first differences of the discrete biharmonic
fundamental solution to the differences of the continuous one. The manner of ex-
tending these results to certain polyharmonic difference operators will be apparent
from the constructions used here.

2. Preliminaries. Points of the plane, the set E,, will be denoted by vectors z,
with coordinates in a rectangular coordinate system (zi, x2), and the length of =
will be given by |z] = (x:2 + z,?)'’2. We shall indicate the mesh points of a square
grid of mesh size & covering the plane and such that the coordinate axes are grid
lines by E, and the points of E, will be denoted by vectors, P, written as capital
letters. For a region D of the plane, we define a corresponding set of grid points
by D» = D N E,. C(x) is to be the open disc of radius e centered on z, and S,(x)
is the square of side length a, oriented as parallel to the grid squares, and centered
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on z. For a function V(P,, P,), defined on E,, we introduce the first divided dif-
ferences

e, V(Py, Po) = V(Pi+h le)l — V(P,, P,)
and
e,V (P, Py) = V(Py Py) — ’I:(Plv P, —h)
and the discrete Laplacian difference operator
2 -
1) AV (P) = z;a,,p,s,,,a‘v(p),

The set N1i(P) = {Q|Q € E,, |P — Q| < h} is the set of arguments at which V(Q)
is required to form A,V (P). For a set of grid points Di, Ni(D)) = {Q|Q € E,,
Q € Ny(P) for some P € D,}. The thirteen-point discrete biharmonic difference
operator 4], denoted by A% can be defined by adopting a property of its con-
tinuous counterpart, A2 i.e.

2) ARV (P) = A(AV(P));
evidently No(P) = N1(NV1(P)) is the set of arguments at which V(Q) is required
to form A2V (P).

While the following device for estimating certain discrete sums has been used
by Bramble and Hubbard, [2], there appears to be no explicit reference for it.

LEMMA 1. Let f(x) be a nonnegative function, integrable over a region R’ in E,, and
subharmonic in a subregion R. Then

2 4
h Téh ) == fR, fdA

for any region D such that T & Dy, Ch/o(T) € R C R'.
Proof. The proof is an application of the solid mean-value inequality for sub-
harmonic functions, which in two dimensions is

sy s L[ jaa.
r" Y C(P)

T

In particular, taking r = h/2 and P € D,

A < 2 A ;
wh® C;./z(mf = xh? s,.(P)f

multiplying (3) by k%, and summing over D proves the result. We will use multi-
indices @ = (e, @) with || = a1 + a3 and the symbol Def = 3'=!f(x)/dx1*: x>
to describe derivatives.

LEmMMA 2. Let f(x) be harmonic in a region R, so that f(x) = Re F(z), where F(z2)
s an analytic function of z = x1 + ixs in R. Then

dzlal

3) fp) =

|D%f| <
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Proof. First let us consider the case when o = (a1, 0). Then, since the partial
derivatives are taken along the real axis,

0" ReF) _ p d"F(e)
0xry ' dz™

so that

. d™'F (2) d™F(z)
dz™ dz |
Now let g(x) = Im F(2) = Re (—iF(2)) in R. Then, for a; odd, as = 2m — 1,

ID%fl = ‘R

=

and

4" — iF(z)
dzlal

alalf élalg
axl"‘axz"’ axll"l

On the other hand, for a; even, az = 2m,

9 _ gy 8

dIaIF(z)
dz|a| *

I\

=

ax;“— oz,
and, again,
o'l _ 5y - 4P )
oxars |l oz, = | gl |

From this lemma, we conclude directly that for x # s, there is a constant k(«),
depending only on |«|, such that

k(a) .
,x _ 8'|ot| ’

In deriving the estimate of this paper, we shall use k and K to denote generic con-
stants which are independent of h (their appearance in successive inequalities does
not represent the same value, but only the fact that there is some constant for
which the inequality is valid).

Let A(P; Q) = A(P1, Ps; @y, Q2) be a function of two grid points P and @, and
let L, stand for either A, or A2 Then A (P; Q) is defined to be a fundamental solu-
tion for L, on the set of grid points D, C Ej if it is defined on N2(D)) X Nao(Dy),
and satisfies both

Dz log |z — s|| =

Lid(P; Q) = 05,
] PEDi; Q&€ Dy
LieA (P; @) = 22LQ

Here 6(P; Q) denotes the Kronecker delta symbol, and the subscript on the op-
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erator indicates that the operator acts on A(P; @) as a function of that variable
which depends parametrically on the other.

It is shown by McCrea and Whipple [7], that the function defined for m and n
integers

“) g(m, n) = _2_1;/0 1 — exp g;}ll’ﬂ;ly) cos ns

where y lies on the branch of the root of cos s + cosh ¥y = 2 which varies between
0 and |cosh™! 3| could be used to define a fundamental solution, TI'y(P; @), for
b Ah n E},,

5) np; Q) = o( B @ Pm @) B s g,

where C. is Euler’s constant. If we denote the radially symmetric fundamental
solution of the Laplacian (— A) by

1
(6) v(@;§) =5 loglz — ¢
then Mangad has shown [6] that

@) ly(P; Q) — Tu(P; Q)| = 54(h/|P — Q])*.

Consider a bounded subset D of E, and a square T the sides of which are grid
lines and such that D lies in the interior of Z; and let G1(P; Q) be defined on Z; X Z;,
for any Q € 2, by

— MG (P; Q) = 5—(%«;@ . PEZi— (D,

G(P;Q) =0, P& (02

(i.e., Gu(P; Q) is the discrete Green’s function for Z,). From (7), it can beseen that
we can choose positive constants ko and k;, depending on the distance d from 9= to
D, such that for Q € Dy, h < d/3, P € (02)

HyP;Q) = —Gu(P;Q) — ko + TW(P;Q) =0,
Hi(P;Q) = —Gu(P;Q) + k14 Tw(P;Q) = 0.

Since AppH (P;Q) = 0,7 = 0,1, for P &€ Z;, — (02)s, by the discrete maximum-
minimum principle [1],

Gu(P; Q) — k1 = Tw(P; Q) = Gu(P; Q) + ko
1e.,
ITW(P; Q)] £ Gu(P;Q) + ke, ky = max (ko, k1) .
Laasonen [5] has shown that for a = side length of =
Gu(P;Q) = Gu(Q; Q) = .354 (log (a/h + 1))

which allows us to state
LeMwMA 3. For a given ho and bounded subset D of E., there is a constant ks depend-
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ing on ho and D only, such that for h < hy,

max |T.(P; Q)| = .354| logh| + k. .
P,QEDy,

The technique of Mangad, [6], in obtaining (7), can easily be modified to prove
the following
THEOREM 1. There exists a numerical constant ¢ such that for [P — Q| > h,

6. T0(P; Q) — dy(P; Q)| = ch¥/|P — QJ

where &), denotes any first difference with respect to either P; or Q;, 1 = 1, 2.

We shall indicate the necessary modifications of Mangad’s proof of (7), and we
observe that while our outline is simplified to show only the existence of ¢, a more
lengthy calculation could be performed in a similar manner to provide ¢ explicitly.
Since

&, Tw(P; Q) = —&p,IW(P; Q) ,
e y(P;Q) = —dupy(P; Q) ,

we may consider only differences with respect to P. Furthermore, from (5), and
the symmetries of g(m, n) [7] it can be seen that it is sufficient to consider Q =
(0, 0) = 0, and P to be in the sector of the plane characterized by

(10) 0§P25P1, P?f(0,0) or (h,O)

)

However, it appears to be necessary to consider the P; and P, differences sep-
arately. From a standard Laplace transform, for P, = mh,

oy L [T (cosmes — cos (me + 1)s> s
5hp2"y(P,O) = onh /o < s € ds .
Hence, with (4), we have, for cos s + cosh y = 2

27 |onp, (T — v) (P 0)] = % U;) (COS e _Si(;lc;lsy(m2 + 1)8>e‘”"yd3

(11)

—m, s

— / (cos mes — cos (m2 + 1)s) % ds| .
0

(Here, and in the proofs to follow, we use the common notation (f = g)(x) for the
function f(z) + g(x).)
We break up the right side of (11) as

(12) 2n(onp, (T — V)(P;0)] = |4] + [B] +[C],

where

A= %/ (cos Mes — c0s (ma + 1)s>e_m,sds,

S

&

_1 <cos mas — 008 (me + 1)8>e—m,yds,
hve sinh y

C-lfe(os s — cos ( —|—1))(e_mly—--e_m‘s>d
=% . COS M2 ma S sinhy s S,
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for some choice of ¢ in 0 < ¢ < 1, independent of h. The estimation of terms |4 |
and |B| of (12) is entirely analogous to that in [6]; we indicate how |C|, the more
complicated term, is estimated. From Lemma 2 of [6], for0 = s = 1, s — §%/10
=< y =< s, and a straightforward calculation shows that lim, o, (sinh y)/s = (%)%
Hence for some ¢ > 0

—MmiY
€ > €

sinh y s

—m, 8

(13) when 0 <s=e

and we have

1/‘ e e

< - —_

|Cl=h o Isinhy s
(14) =h o Tljerds
0 10
o (o (58) - 1 5
(10 — o \ P\ 70 )~ 1 H 10 )
3 €

e G s Y )
(lO—e)h< mys® exp my\ s 10 ds + ose ds

Now on (0, ¢) s — s3/10 = (1 — €/10)s, so that
exp (—mi(s — §3/10)) = exp (— (1 — €¢/10)m;s)

@

IIA

and

_m [T _ e’ Rk
= o )hf ’ OXP( (1 10 >m‘s>ds+ 10 — HymK

mi 1 h2 _}1,_2__
= 10— O <(1 - 62/10)m;> RO [pp = 5O s

since from (10), P, = mih = |P|/2'2. We note that the more complicated pro-
cedure of [6) would avoid the uncertainty about the range of ¢ introduced at (13)
and would permit explicit estimation of ¢.

Similarly, we have

27|8up, (Th — ¥)(P;0)] S |A'| + |B'| + |C']

for

1 ¥ cos maes , _. _
[ ( ms e (m,+l)8)ds ,

B 1[ (l—e”)e

cos mesds ,
. sinh y

—V

C = lf cos mgs<1 ¢ mv 1-¢ e_"'">ds
h /o sinh y s

and, again, we will only indicate the treatment of C’. If I is used to denote the
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integrand of C’, we let St (S~) be the subset of (0, €) on which I is positive (nega-
tive). Since sinh y = y = s — §/10, s = y for ¢ < 1 [6, Lemma 2], on S+

= (- (55 )
s — s°/10 8
3
on (s~ 55))
1—¢" ' 10// _ -ms
S

1 —s/10

<k e_m‘s<ex (__mls3> -1 - s )
T1-¢€/10 P 10/°
A S+|I|ds§h . exp \ 7o 1+ 10 /¢ ds

which was estimated in (14). On S—

i

Hence

_s —y
1—e e—m,s_ 1—e —mys
s sinh y !

now sinh y =< sinh s < s 4+ (s*/3!) cosh e and 1/sinh y = (1 — bs?)/s where b =
[cosh €]/3!. Thus on S—

(1 = 3 1 — b 2 A
1 15 = (e (e ) )5
3 3
(A= 0= = o (- 45)

2 3
S 2 _ S ) —mys < Tool,—mas
10—|—bs)exp< s+ 10>e < ks’e

for0 = s < e< 1, and

Il =

1/ <1/°) 2 —m,s
(15) W S_|I|d3=h . ks"e™™°ds .

However, the right-hand side of (15) was also estimated at (14). These, then, with
the corresponding estimates for |A|, |B|, |A’|, and |B’| and the symmetries of T,
and vy conclude the estimate.

3. A Fundamental Solution for the Biharmonic Differential Operator. To define
a function on E; X E, which is a fundamental solution for A? in a bounded region
D, let L be a circle centered on the origin and containing D, and let L, be a circle
with the same center but with radius ro equal to twice the radius of L. L; is to be
a larger circle than Lo, centered on the origin, with radius ri. Let f(s) € Co*(I),
where I denotes the real line, 0 < f(s) = 1, and f(s) = 1for0 < s < 7, f(s) = 0
for s = rq; we define n(x) on B by 9(x) = f(|z|) and we define B(x; £) on E; X E; as

B(w;8) = [n0v(e; (& 1., .
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For convenience in the sequel, we will assume that ry = 2ro, and we summarize
some of the propertics of this function in the following theorem.

TueoreMm 2. (i) B(x; &) is a fundamental solution for A% in D.

(ii) B(x; £) € CY(E2 X E2) and a modulus of continuity for any of s first deriva-
 lives is w(8) = Ko |log 8|.
(iii) For x # &, x, £ € Ly,

AB(z;8) = AB(x;8) = v(x;8) .

(iv) For x # &, B(x; &) is an infinitely differentiable function of x and £, and its
derivatives are continuous in the sense of a function of four variables when x and &
vary in disjoint subsets of L.

(v) There is a constant K, depending on ro and «, such that for x # £z, & €
LO) |a! —2- 2)

K(|loglz = gl + 1)

DzaB ; é lal_2
DBl s FLE

Proof. (i) To sce that

/B(:v; £A’(E)dA; = ¢(2)

for all ¢(x) € Cy°(D), we need only justify the interchange of order of integration
in [ n(t)y(x; Ov(E; 1) A%(£)dAdA, and observe that (a) A%(§) = — A(— A¢(8)),
(b) v(&; 1) = v(¢; £) is a fundamental solution for — A, (¢) 7(f) = 1 on the support
of ¢.

(ii) Since

1 alx 2]
'/q(z) AO R z —1 |log £ — t]|dA |

converges to zero as e tends to zero umformly for (x, £) € Lo X Lo, we conclude
that

1) B _ [y 2120 4 g aa,

exists on Ly X Lo. Suppose that

2 1/2
[(z,8) — @, &) = (; (xi—a!) + (& — ‘éi’)2> <39,
then 2’ € Ci(z), § € Cs(¢) and

0B@'; &) _ 9B(z;8)|
ox; or: |
where, setting S = E; — Ca(x) — Ca(§)

1= [ ao(GE) ey - D) aa,

and I, and I; are integrals having the same integrand, but taken over Css(zx) and

(19)

S L]+ 1o + |14
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C4s(£) respectively. Using Lemma 2, for (y, w) € Cs(x) X Cs()

'/ o) ay((;t/: t) 67(@0 0 g4,

w s(olpta) rolto)a)”

< k/a _; < k(og X\ — log 5)

for A = ro + r1. We can estimate I; as follows

I = 4]+ |B[,
where, setting g(t) = v(£;t) + v(&';)/2, and sz + (1 — )z’ = z(s) € Cs(x) for
0<s<1,

A= [ 2000 F @0 — 1604,

i _x,)/ (f an<t)q<t> av@g(ti) 0 g,

+§}5 nen(9© ZEE0 4y g,

(n1, ns) being the outer normal to 4S. Now, using (21), we can estimate

/ an(f)g(t) N @(s);0) gy
Aty

uniformly for s & [0, 1], and

(v&0 + V(E';t)> Iy (x(s); ) }
géﬂ( 2 P

<k
— 8

(log A — log 5)95 do; < K(log\ — log$) .
a8

Since |zx — zi/| < §, then, |[A] < Ké(log A — log §). The estimation of B is similar
but simpler; i.e. for £(s) = s + (1 — 8)& & Cs(8)

B — /n(t) (v(£; 1) — v(F; t))“— (v(z;t) + v (@' t))dA

_ < )/[ 20 — ELD L 50y 40 ) ds

The volume integral is estimated using (21) and we have |B| = Ké(log A — log 6)
so that, for § < &,

.| < Ks|log 8| .

To complete our estimate for (10), we must consider I, and I3; however, letting
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J be either Cy;(x) or Cys(£), it can be verified that, for 2/ € C;(z), £ & Cs(¢)

’.
(24) / (@' t) v(¢';8)dA ., = Ké|log 8|
g 0x;
for a uniform constant K, using Holder’s inequality. Using (24) to estimate |I,| and
|75], we have, from (19), that for § < &, there is a K, dependent on 8§, and \ only,
such that for [(z, §) — (@, &) < 8

0B@’;¢)  9B(; s)l
9x; ox;

< Ksllog 8|

which proves (ii).

(iii), (iv) Let A, and A, be two compact disjoint subsets of Es, we wish to show
that D,*B(z; £) is continuous on A; X As for every a. Let 4e = |[A; — Ay =
inf,€a, €4, | — y| and take Q to be a piecewise smooth, compact curve enclosing
Aisuch that |2 — Ay| = ¢, 7 = 1, 2. Let Z be the interior of 2, and we assume for
convenience that Z C Lo, i.e. 9(f) = 1, ¢t € Z. From (18), it can be seen that

afl}i

(26)
+ [ v ‘W D04+ P —nex(a; 096 0o,

where (71, n.) is the outer normal to Q. For x € A; and ¢ € A,, if the right side of
(26) is differentiated under the integral signs with respect to x;, the resulting in-
tegrals converge uniformly with respect to + € Ay, i.e., using Gauss’s theorem

2B (e 2

@7) + f y(z; 1) L2 ED gt(gt]") dA,

In particular, if we choose x = E, A =2,A0 = £ Q = Ce(x), (27) shows that

AB(xr; §) = / _ew () Axy (x5 )y (E; t)dA

+/ v(@; ) Any (& t)dA,

Oy (x; 1) 37(2 t) >
+éx—tl=e< V(&) - v(x; 1) )do

~ 5P 0de - IOg‘ﬁ_”_ 2D gy, = ;)

2me Jlo—tl—c 27 an.

since y(z; t) is harmonic for z # ¢, enabling us to employ the mean value theorem
for harmonic functions for the first line integral above and to conclude that the
second vanishes, proving (iii).
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Returning to the case of arbitrary but disjoint A; and A, we can continue in
the manner in which (27) was obtained to see that forx € A; C Z, £ € Aq

D:"B(x; £) = /E 1O 0Dy (5 0)dA
lal Cme e
(28) + (=D /Zv(x,t)Dt y(§;0)dA,

+§é 2 0Dy (@)D Iy (§5 0)

i lptri=lal—
+ n2berD Py (25 6)D "y (€5 t)do,

where a,,, b,, are numerical constants depending only on the multi-indices which
are their subscripts. Since the integrand of the line integral in (28) is uniformly
continuous for (z, £, t) € A1 X As X @, the line integral is continuous on A; X As.
That the volume integrals define functions which are continuous on A; X As can
be seen from the approach taken in proving (ii).

(v) To obtain these estimates for the derivatives of B(x;£) whenx 5 £, z, £ € L,
we set in the proof of (iv) + = Ay, £ = Asand @ = C.(x), e = |x — £|/2 and esti-
mate the various terms on the right side of (28) using Lemma 2. E.g., setting

la, = a,

/ 1(0) D"y (w5 1)y (§; 1)dA..
E,—C(2)

- (
< k) | / 0

Ea—Cy(2)~C () |z —

[log [¢ — t[[dA,

¢

/ 1 tdA]
4] o sl =l

A
log 1% ’3"+1gx>/l ar.

z—¢l/a 7y
lz—£l/4 )
4 {

t
+ 3l — Ela/‘) r|log rler

< k(a) il(

< g llogle = gl] +1
le — &

where K depends on « and \. Similarly

| v@ionoynia, < g Hosle=dl4 1
C (2 o — g]*°

and the line integrals can easily be shown to satisfy the same estimate, for some K
depending only on « and A.

4. A Fundamental Solution for the Biharmonic Difference Operator. The defini-
tion of B(z; £) is immediately suggestive of the following construction. We define
T (P; t) to be the extension a.e. of T'w(P; Q) to E;, X E, as

D(P;h) = Tw(P;Q), te Su@),
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and let B,(P; Q) be defined on E;, X E; by

Bi(P; @) = [n@Tu(P; OT4(Q; A .

TuaeoreM 3. By(P; Q) is a fundamental solution of Ay* in L.

Proof. This result follows immediately from applying A} to B,(P; Q), observing
(2) and the fact that T'»(P; S) is a fundamental solution for — A,.

The apparent fact that B,(P; Q) is an approximation to B(P; Q) is given
quantitative substance by the main results of this paper, Theorems 4 and 5.

TurorREM 4. For any constants ho and lo satisfying 2r¢ > lo > 6ho, there exists a
constant M depending on ho, lo and ro, such that for h < ho,

) max |BW(P; Q) — B(P; Q)| = MR*(|log h|)

P,QEI ilP—ql>1,

and a constant M, depending on ho and ro such that for b < ho
(i) max |By(P; Q) — B(P; Q)| < Mih*(log h)*
P.QEL,

where L s the circle of radius ro centered on the origin.
Proof. By definition, we have

Bu(P; @)~ BP; @) = [n((TuP30Ti(Q; ) — 775 0 (@3 0)dA.
= [ro@ = @0(PE )@ o0a

r
+ [y = 1(@; t)< r ¥ 7><P; HdA,
=L+ 1,
where I, and I, are defined to be the two integrals on the preceding line. Since they

are similar in form, it is sufficient to show how |I,| can be estimated. We introduce
a piecewise constant function

’Yh(P)t)E'Y(PyT)) tESh(T)7TGEN2(P))
y(P;t) = Tw(P; T), tE Si(T), T & NqoP) .
Then

1= [a06 = w5 @i as,

(29) + /ﬂ(t) (vn — Tw) (P t)<7 £ Ph>(Q3 QEEY

= J 1 + J 2.

We wish to use the following observation in estimating J,. Let M ;5 denote a
uniform bound over S,(T) for the absolute value of the ith derivatives of
o(t) € CiSu(T)] and consider f(t) € C}S,(T)], g(t) & C[Sw(T)]. Then, using
Taylor’s expansions, it is immediate that
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1
(30) B2

If t € Siu(T), and T & No(P), then
3D |P—t| z (2/5)'2|P — T ;

hence, with Lemma 2,

[0 - srnewas| s & arlon) + mn,) .

h

FvPit)| .k

(32) tg}::g) at '6t' = IP — le ’
v (P;t)| k
trer;;:z(m at; [P T|"

Noting that the restriction lo > 6ho ensures that N»(Q) N N2(P) is void, we have
with No = N2(P) U N2(Q), f(t) = v(P; 1), 9(t) = 2()((v + Tw)/2)(@; D)

|74 < ? F(T))g()dA

e v b

. 1 . . >
+h T%(P) e ( fs,,m ly(P;t)|dA « + f oy TS t)|dA.

X (tg}sii{m (lv(Q; ®)] + lrh(Q;t)l)>

+h* > max n@®)|v(P;t) — v(P; T)|
TEN(Q) tESH(T)

1

X{? / lv(Q;1)|dA : + |Fh(Q;T)ll-

h* 7 spm J

From |T4(Q; T)| = [v(Q; T)| + 54(r%/|Q — TP, for T & N(Q), l9(T)| =
(1/2m)|log |Q@ — T|| + 6 and, using (30)—(32), it can be seen that the first term
on the right side of (33) is bounded by S;, where

33)

N of 1 (1 1 1 >
S = kb TEL%:—N,h<lP T| ( |Tog @ — i +6>+ |P—T| |Q— T

(35)
+ kn* ; hﬁ(, | lglQ - TH)MM

However, estimating the summand within and without C,/2(Q), and using Lemma 1,

: [logl@ = 71| ( (A)) 1
h Te%:_N, P log 4ro — log \ 5 | Jh TeL,E,,_N, P

I - T
Iy |T—Q|§ln/2;T$N,(Q)l og|Q I

é k(lOg 4:7'0 - lOg h) + kl .

From Schwarz inequality, and Lemma 1

2 1 1 4’°dr>
AN D P T] IQ—TlékUh — ) = k(log 4ro — log h)

TEL ,—N.
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and it is clear that the remaining terms of (35) can be estimated in a similar fashion,
so that for any he, there is a constant K depending on h, lo and 7o such that

Sy < KR? [logh| forh < ho.

The remaining two terms on the right of (33) are each sums, multiplied by A2, of
13 terms, where each term is bounded by K|log h| for & < h,, for a suitable con-
stant K depending on kg, I and ro. Hence, for a suitable constant K,

(38) |Ji| = Kh?|logh| for h < hy.
Using the estimate of g(7") preceding (35), and also (6) and (7), and Lemma 3

/3l = TEE'Zh:—Nz (54 UD%ZTI_Z’)/:S,L(T) 77(0(“_(%]2&%——&l + 6>dA‘

(39) 10 <l log [Q — ¢ 5 )
g el e - g
+ 25 1 s 2 o + ke — 35tlogh a4,

< Kh'[logh| for h < ho

for a suitable constant K. This concludes the estimation of 7; (Eq. (29)), but, as
mentioned, I, is similar in form, hence (i) is established.

The second estimate (ii) is obtained by the same process, not using, however,
[P — Q] = l,. If we examine the first term of (33), it is bounded by S; of (35)
which can be estimated uniformly, as in (36) using

) | log @ = 1|
b 2
TEL“L—N.,. 'P —_ Tl

1 2
< (log 4ro — log h)h’ ——— < K(logh
_(Og To 0g ) TGI%;—NzIP—TP_ (Og ) ]
and the fact that (37) is already uniform in P and Q. Hence, for P and @ in L,
and & < hy,

81 < Kh? (log h)?

for a constant K depending on 7o and he. The remaining two terms in (33) are
sums, multiplied by h? of 13 terms, each of which is bounded, for A < ho, by
K(log h)?, for a suitable K which depends only on kg and r,. Hence, we have the
analogous estimate to (38) uniform in P, Q

(41) |J1] £ Kh? (log h)?
for a suitable constant K. Similar modifications of (39) will show that
|J2] < Kh? (log h)?

for P, Q & Lo, and h < ho, which, with (41), establishes the second estimate.

We wish now to conclude our results by using Theorem 1 to establish an esti-
mate similar to (i) of Theorem 4, for the first differences of the fundamental solu-
tions of the biharmonic and discrete biharmonic operators.

THEOREM 5. For ho < 7o/5, there exists a constant M, depending on hy and 1o,
such that for any first-difference operator 6y,



A BIHARMONIC FINITE DIFFERENCE OPERATOR 335

M h’|log h)

8(B(P; Q) = Bu(P; Q)] = 5%

max
P,QE Ly, P—-@l>s5n

f07‘ h < ho.
Proof. While the idea of the proof is essentially the same as that of Theorem
4, some alterations are necessary to provide the nonuniform estimate. For any two
points P, @ & Lg such that [P — Q| > 5k, let W be a smallest square containing
Si(T), for any T & (Cir—ol(P) U Cip—ql(@))n, (Ca(b) being the circle of radius a,
centered on & as defined above). Consider the grid lines running in a direction which
make an angle of 45° or greater with the line segment P@, and choose a line running
in this direction which is halfway between the grid lines of the considered direction
and which is one of possibly two such lines that are nearest to the midpoint of PQ.
(See Fig. 1.) This line will be labelled J, and coincides with a line of edges of squares
Sp(T) which comprise W. It divides W into two rectangles, W, the rectangle con-

T ' N

H i

it W1 :

'T N | al 1]

{ P e | 0 -

| AHEN B

St N
N |
i } |
e 0 7/
i :
' ik !
Wl ] ~ !
e 1
-/
Iy 1y

taining P and W, the rectangle containing @. Using this,
(44) 16:B(P; Q) — 81Bu(P; Q)| = |Ii] + |Is] + |T5]
where the I, are integrals with integrand

1(0) @u(T(P; ) Tu(@;0) — au(y(P;1)v(Q;1)))

taken over t & Wy, W, and E; — W, respectively. We proceed with the particular
case 5, = 0Orq,, the other cases being handled in exactly the same way. With
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2
1 = 4 T @+ @ TG = 1) (@ 1)
TCG
+ (T = ) (P; T)an(Th + ) (Q; T)|
+ 2]7<P; Yoy (Q; T) hl f , nad

h

(45) —unt | v(P;t)éw(Q;t)n(t)dA’}
Sp(T)
of 12 llog IP - T” 1 1
ékh<h & -1 =T p_1r
1 1 1 1 , |log [P — TH))
+ Q —T* IP =T +Ml"(lP— Q-1 " lQ — 1

where we have used Theorem 1, (7) and (30). Using Lemma 1, and the techniques
of the preceding proof, we have

(46) [Is| < kh* [log hl/|P — Q] .

Turning to the remaining terms, I1 and I,, we can use (9) to see that

I, = /W (TW(P; ) (Th(Q; ts — h, ta) — Tw(Q;1))/h

2

— 7@ ) (v(Q5 0 = by b)) — v(Q;8))/hin(t)dA.
(47) = /W {(=Tw(@;)TW(Q; 1) + v(P;0)v(Q;8))/h}n(t)dA.

+ /W ((Da(P; s + By )TW(@; 1) — v(P3 ta + by 12)y(Q; 0)/h)

X 7](t1 + h, tz)dAg
where W3 is the rectangle obtained by translating W, through a distance 4 in the
direction of the negative ¢; axis. We let Wy = W, N W3 and let Z; and Z, be the
two rectangles W, — W, and W3 — W, We observe that the Z; have width » and
length not exceeding 3|P — Q| + h, and contain not more than 3|P — Q|/h + 1
points of E,. To simplify the following expressions, we shall assume that W U
W3 C L, so that 9(f) = 1 on W U W;. The modifications of the following esti-
mates which are necessary if W \U W3 is not contained in L, can be seen from
the procedures of the preceding proof or the last terms on the right sides of (45).
From (47), it is apparent that

I = /W {—8up, Tu(P; TA(Q; 1) + Supoy (P £)7(Q; ) }dA,

4

@) 1] @iov@n - neioTQ;nad,

+ %L {Th(Pitr 4 hy t2)Th(Q; ) — (Pt + h, t2)v(Q; ) }dA . .

The integral over W, in (48) and I, can both be treated in the following manner:
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S |

h J

(
Ll <k Y TP TaTwQ; T + 7 (P; D)oy (Q; )dA
TE h )

N2 (P)

+ —};— > {l(v + TW)(P; T)on(Th — v)(Q; T

TEW,,—N.(P)

(49)
4+ [(y = Tw)(P; T)on(Tw + v)(Q; T)| + 2‘7(P; Tay(Q; T)
1 ) .
- h2 /:Sh(T) V(Py t)5h7(Qy t)dA t‘} .
Fort € Wy, |Q — 1| = |P — Q|/2(2)*%, — h/2, ie.
B 1 < 2(2)1/2 <1 3 (2)1/2h -1
(50) Q== 1P ~ql IP—QI>

_ 0@ 1k

SIP-Ql5— (@Y P-4l

since |[P — Q| > 5h. To estimate the sum of 13 terms which is the first sum on the
right side of (49), we employ Lemma 3, Theorem 1 and (50)

‘/:S(T

h

> (lrh<P;T>ahrh<Q;T>|+h% )V(P;t)ﬁﬁ(Q;t)dAzD

TEN,(P)

f 2
< 13ikh2(llog h| + 1)<]P i o (P8ihQ13>

+———le Qlfo r(—logr)er’
B’ logh |
P — Q|

for h < ho, k dependent on ho. For T & Wy — No(P), |(v + Tw(P; T)| =
((1/7) llog [P — 7| + 12) and

<k

2

Kok
|p—qPF~ |P—-Ql’

18,(Tw + v)(Q; T)| = 2|6wv(Q; T)| + 8¢
hence

) {|(v + T (P; T)on(Tw — 7)(Q; T)|

+ (v — TW)(@; T)on(Tw + v)(Q; T}

% {(1 >< 8ch’ )
< — ol — oYy
(51) = 2 rew/Zvw) Wl log [P = Tl + 12 Q—T1°

+ <|P - T|>2 = Ql}

B
2 rew NP

h*log Al

< k——.
=5TP ¢
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Using (30) and Lemma 1 in the same manner as previously, it can be seen that the
last term of (49) can be bounded by the last term in (51), hence

(52) |1 < k— | |log h|

IP Q
for a suitable constant k.

As the analysis of I; would provide the necessary estimate of the first integral
in the expression (48) for I, we can complete the estimation of I, by considering
the integrals over the strips Z;; e.g. set

A=BL7WMﬂ@w—nwmn@mmJéh§3uw—rmmT>

2 T€Z,
(53) X (v + (@D + [(v — Tw)(Q; T) (v + Tw)(P; T}
+h 2 %f y(PiO)v(Q; )dA, — ~(P; T)v(Q; T)l.
T€2Z,, 1h" Y 55D

Using (7), we can see that the first sum on the right-hand side of (53) is bounded by

; 1 _ 54
kh Té‘;” {!P - le(zi log |Q — T + 25)
(54) 1 ( 54>1
+m2 2| log |P — T|| +2~5 -

Fort € Su(T), T € Z,, the triangle inequality gives [P — i| + b/(2)'2 = |P — T,
so that for a number a, obtained by the same calculation as gave (50), 1/|P —
< a/|P — T| and similarly 1/|Q — ¢| £ a/|Q — T|. Thus, from (30), it can be
seen that the second sum on the right side of (53) is less than

| log |P — T|| 2 |log |Q — T||
& jo—17 TIP=TNe—1" |p_71p

We observe that

P=Q( 1 _1\_1P=Q h_,_
2 <(2)1/2 5) = 2(2)1/2 2 = IP T]

and similarly (@ — 7| = k|P — Q| when T € Z,, and using these inequalities and
noting the remarks preceding (48) we see that (54) and (55) are bounded for some
constant k by kh? |log h|/|P — Q|; e.g.,

llog |P — T[| _, h'[log [P — Q| h’[log k|
—2—— < =} 1=k .
r€z, |Q — T]2 [P — Q|2 TEZZ, 1|P - Ql

Since the integral over Z, in (48) can be treated in the same manner, we have, for
some k&

(55) kh®

h*|log h)|
]

which with (46), (52) and (44) shows the estimate given in the theorem to be valid
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when 8, = diq,. As mentioned, however, the other cases are not essentially different
and so we shall consider the result proven.
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