
Quasi-Newton Methods and their Application 
to Function Minimisation 

By C. G. Broyden 

1. Introduction.The solution of a set of n nonlinear simultaneous equations, which 
may be written 

(1.1) f1(xi, x2, *, X2, X.) = 0 , j = 1, 2, *, n, 

can in general only be found by an iterative process in which successively better, 
in some sense, approximations to the solution are computed. Of the methods avail- 
able most rely on evaluating at each stage of the calculation a set of residuals and 
from these obtaining a correction to each element of the approximate solution. The 
most common way of doing this is to take each correction to be a suitable linear 
combination of the residuals. There is, of course, no reason in principle why more 
elaborate schemes should not be used but they are difficult both to analyse the- 
oretically and to implement in practice. 

The minimisation of a function of n variables, for which it is possible to obtain 
analytic expressions for the n first partial derivatives, is a particular example of 
this type of problem. Any technique used to solve nonlinear equations may be ap- 
plied to the expressions for the partial derivatives but, because it is known in this 
case that the residuals form the gradient of some function, it is possible to introduce 
refinements into the method of solution to take account of this extra information. 
Since, in addition, the value of the function itself is known, further refinements are 
possible. 

The best-known method of solving a general set of simultaneous nonlinear equa- 
tions, in which the corrections are computed as linear combinations of the residuals, 
is the Newton-Raphson method. The principal disadvantage of this method lies in 
the necessity of evaluating and inverting the Jacobian matrix at each stage of the 
iteration and so a number of methods have arisen, e.g. [1], [2], [4] and [8] in which 
the inverse Jacobian matrix is replaced by an approximation which is modified in 
some simple manner at each iteration. Although each method has its own peculi- 
arities certain properties are common to a large class of these methods, and several 
of these are discussed here. In particular, if it is known that the functions to be 
zeroed are the first partial derivatives of a function F, then it is possible, if F is 
quadratic, to modify the approximating matrix in such a way that F is minimised 
in a finite number of steps. This method of modification is not unique and leads to 
a subclass of methods of which one example is the method of Davidon [3] as amended 
by Fletcher and Powell [4]. 

Since in the methods under discussion the corrections are computed as linear 
combinations of the residuals, it is natural to introduce matrix notation. Thus a 
function fj of the variables xi, x2, , xn, may be regarded as a function of the nth 
order vector x, and each fj in turn may be treated as the jth element of the nth 
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order vector f. In this notation the basic problem becomes that of finding a vector 
x such that 

(1.2) f(x) = 0. 

If the ith approximation to the solution of (1.2) is denoted by xi the notation 
may be simplified by referring to f(xi) as f . This vector is the vector of residuals at 
the ith stage of the process, and since the correction to xi is to be given as a linear 
combination of the residuals it follows that the process may be defined by 

(1.3) pi= -H= f, 

(1.4) x+1 = xi + Piti 

where Hi and ti are an nth order matrix and a scalar respectively. It is clear from 
these equations that the inclusion of ti is not strictly necessary as it could well be 
absorbed in the matrix Hi. It is convenient to treat it as a separate entity, however, 
since in practice its value is often not known until after the correction vector pi has 
been computed. 

The class of algorithms defined by (1.3) and (1.4) is extremely general. If, for 
instance, the functions fj are the first partial derivatives of a function F, Hi is the 
unit matrix, and ti is chosen to minimise F, then (1.3) and (1.4) define the classical 
method of steepest descent. If Hi is A-', where Ai is the Jacobian matrix evaluated 
at xX, and ti is unity then the method defined by the algorithm becomes that of 
Newton. Finally, Hi may be chosen to satisfy certain conditions discussed more 
fully in Section 2 below. Since these conditions ensure that some properties of H, 
approximate to those of A-' these methods may be regarded as variations of New- 
ton's method. For this reason, and for brevity, they will be referred to in the sub- 
sequent discussion as quasi-Newton methods. 

2. Quasi-Newton Methods. The quasi-Newton methods may be defined as those 
methods for which the iteration matrix Hi+, satisfies the equation 

(2.1) Hi+jyj= piss 

where 

(2.2) Yi = f+- f(x+1 - p%s) 

pi is identified with the pi of (1.3) and (1.4) and si is some scalar whose choice is 
discussed subsequently. 

Assume now that f is differentiable at xi+,. It then follows that (see e.g. [6],. 
pp. 188-189) 

(2.3) f(xi+l - p%s%) = f+l-A+lpisi + r(pisi) 

where Ai+, is the Jacobian matrix evaluated at xi+, and where r(pisi) is small in the 
sense that 

lim IIr(pisi)II = 01 
t lpisil I o nI s ell 

the vertical bars indicating the Euclidean norm. Hence 
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(2.4) yi= A+1psi- r(pisi) 

so that, if Ai+1 is nonsingular, Eqs. (2.1) and (2.4) give 

Hi+lyi = A-11(yi + r(psti)) . 

Thus if sl lpl I-> 0, as it does when xi approaches the solution since then 
PI I I 0 O, it follows that 

(2.5) H i+ly-i >Allyi 

so that Hi+, will have at least one property of the inverse Jacobian matrix, justify- 
ing to some extent the use of the term "quasi-Newton". 

A somewhat more lengthy discussion of the derivation of (2.1) and its identifi- 
cation with Newton's method is given by Broyden [2]. In that discussion, however, 
the matrix Hi is defined to be the negative of the Hi defined here. The definition of 
Hi in the present work follows that of Fletcher and Powell, and is more nearly 
consistent with the usage of Traub [7] than was the definition in [2]. 

In the examples already published of this class of methods si has nearly always 
been taken to be ti, and it will be so chosen in what follows. With this value of si, 
(2.1) and (2.2) become, from (1.4), 

(2.6) H*ly= Piti, 

(2.7) Yi = f+1-f. 

Eq. (2.6), although a little less general than (2.1), is still not sufficient to define 
Hi+, or even to give any indication of how it may be derived. Since, however, a 
matrix Hi which possesses to some extent the properties of the inverse Jacobian 
matrix is already available it would appear reasonable to obtain Hi+, by adding 
some correction to Hi. Denote this correction by Bi. Then 

H+= H + B 

and, from (2.6), 

(2.8) Biyi = piti - Hiyi. 

The simplest (in the sense of least rank) matrix that Bi can be so that (2.8) is 
satisfied is 

(2.9a) Bi = (piti - Hiyi)z.T 

where zi is arbitrary except for the normalisation condition that 

(2.9b) ZiTyi = 1. 

This, however, is a little too restrictive and a more general alternative is 

(2.1Oa) Bi = pitiq T - HiyiziT 

where both qi and Zi are arbitrary but subject again to the condition that 

(2. lOb) qiTyi = ziTyi = 1 . 

The remainder of this work is devoted to the discussion of methods where Bi is 
given by Eq. (2.10), so that Hi+, is given by 
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(2.11) Hi+, H Hi- HiyZ,T + pitiqiT . 

This equation includes as special cases the generalised secant method of solving 
nonlinear simultaneous equations [1], [5], [7] and [8], a method due to Broyden of 
solving nonlinear simultaneous equations [2], the modified Davidon method of func- 
tion minimisation [4], and the generalisation of Davidon's method, discussed below, 
of function minimisation. 

3. Stability. A necessary condition that the algorithm defined by (1.3), (1.4) and 
(2.11) will solve an arbitrary minimisation problem is that at no stage of the process, 
i.e., for no i, will either qi or zi be orthogonal to yi, since it then becomes impossible 
to satisfy (2. 10b). Another possible cause of the failure of the algorithm to converge 
is the singularity of some Hi, and as a first step in investigating why this should 
be so the following lemma is proved. 

LEMMA. For an algorithm defined by (1.3), (1.4) and (2.11), Xi+r, where r > 1 is 
given by 

(3.1) Xi+r = Xi -Hivir 

where Vir is some vector. 
Proof. The proof is inductive. It follows from (1.3) and (2.11) that, if Mi is 

defined by 

M= (I - yiZ,T - f itiqiT) 

then 

Hi+1 = HiMi. 

Hence 

Hir= HiMM?i+j.. Mi?ri. 

Assume now that xi+r is given by (3.1). Then from (1.3) and (1.4) 

Xi+r+l = xi- Hivir - Hi+rfi+rti+r , 

(3.2) = Xi - Hi(Vir + MiMi+1 . *Mi+r_lf i+rti+r) 

=Xi - HiVi,r+l 

Since, from (1.3) and (1.4), (3.1) holds for r = 1, it holds for all r > 1, and this 
proves the lemma. Now if the algorithm is to converge to a solution x, 

lim xi+r = x 
r-xc 

and it follows from (3.1) that 

(3.3) lim Hivir = Xi - X 

Now if Hi is nonsingular it is always possible that (3.3) will hold, but if not it will 
hold only if the vector xi - x satisfies certain conditions. Since these conditions in 
general will not be fulfilled, it is desirable that duringf the course of the algorithm 
Hi should never become singular. Quasi-Newton algorithms for which qiTyi and 
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ZiTyi never become zero and Hi never becomes singular will be regarded as stable, 
and it is shown subsequently that the modified Davidon method and its generalisa- 
tion are both stable according to this definition. 

It should perhaps be emphasised here that stability as defined above is not suf- 
ficient to guarantee that a particular algorithm will converge. For, consider methods 
1 and 2 for solving nonlinear simultaneous equations, defined and discussed by 
Broyden, [2]. Of these, the second is stable and the first is not, since in the first 
method it is possible that ziTyi = 0. However, in practice, the first method solves 
equations and the second is unable to do so. Neither is it correct to infer that an 
algorithm for function minimisation will converge to the solution merely because 
the function is reduced at each step, for the sequence of function values Fi obtained 
by the algorithm may well have a lower bound that is greater than the minimum 
value of F even for F strictly convex. The most that can be inferred from the fact 
that Fi+i < Fi is that the algorithm cannot diverge, a somewhat tautologous con- 
clusion. 

4. Linear Systems. If a quasi-Newton method is to solve effectively a general 
set of nonlinear equations intuition would suggest that it would solve a general set 
of linear equations in a finite number of steps, and indeed some investigators set 
great store by this property. Although the present author is not convinced of its 
desirability, it is relevant to examine sufficient conditions for its attainment, since 
they do suggest the form that particular algorithms might take. 

Let then k and s be two positive integers and define the matrices Yk,, Zk,8, 

Bk,Sl Pk,S, Qk,S Tk,8 and Gk,3 as follows, where all the vectors concerned are of 
order n. 

(4.1) Yk,s = [yk, Yk+1, * *, Yk+sl1, 

(4.2) Zk, s = [Zk, Zk+l, * *, Zk+s-1], 

(4.3) Bk,S - (I - ykZk - Yk+ Zk+i) * * (I - Yk+s- Zk+s_1) 

(4.4) Pks= [Pk, Pk+1, * *, Pk+s-1], 

(4.5) Qk,s [qk, qk?1, * I qk+s-1], 

(4.6) Tk,s = diag (tk, tk+1, *.*., tk+s-1) 

(4.7) Gk,. = [BT +l,qk, BkT2,s-2qk+1, *.. 
, 

BTS-,11qk+s-2, qk+s-11 

Then, from Eq. (2.11) with i = k, k + 1, k.., k + s - 1 and the above definitions 
it follows that 

(4.8) Hk+s = HkBk,s + Pk,TkTsGk,sG 

Consider now Eq. (4.8). The first term on the right-hand side consists of Hk 
modified by post-multiplication by Bk,s and the second term consists solely of in- 
formation derived from the last s steps of the process or injected during these steps 
by the choice of qi and zi, i = k, k + 1, * *, k + s - 1. Now it is reasonable to 
require of Hk+s that it should comprise the latest information derived from the 
iteration so that the first term on the right-hand side of (4.8), which represents 
essentially old information, should tend to the null matrix as s increases. Since Hk 
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is nonsingular, this is achieved if and only if Bk,, tends to the null matrix as s -* co. 
A more stringent requirement is that Bk,8 becomes the null matrix after a finite 
number of steps. If this occurs, then Hk+S will comprise information derived only 
from a finite number of the most recent steps, old information having been com- 
pletely purged. It will now be shown that Bk,, cannot be null for s < n, and neces- 
sary and sufficient conditions for its nullity will be established. 

THEOREM 1. If Yk,n, Zk,nl and Bk,fl are as defined by Eqs. (4.1)-(4.3) then the neces- 
sary and sufficient condition for Bk ,n to be null is that the product Zk,n Yk,n is unit upper 
triangular, i.e., that 

(4.9a) ziTyi = I i = k, k+ 1, .. * k + n- I 

(4.9b) ZiTyj = O k < j < i < k + n-1 . 

Proof. (a) Sufficiency. Since both Yk,n and Zk,n are square, the condition that the 
product Zkj,nYk,n is unit upper triangular imnplies that Yk,n is nonsingular. From 
(4.3) and (4.9) it may be verified directly that Bk,n Yi = 0, i = k, k + 1, , 

k + n - 1, so that Bkm, Yk,n. = 0, and the result follows from the nonsingularity of 
Yk,n. 

(b) Necessity. Direct expansion of the right-hand side of (4.3) gives, from the 
postulated nullity of Bk, 

(4.10) 0 = I - Yk kVfZk l, 

where Vn is some n X n unit upper triangular matrix. Since, from (4.10), Yk,n can- 
not be singular, it follows that 

I = VnZ k ,nYk,n 

and since the inverse of the unit upper triangular matrix Vn is itself unit upper 
triangular, the result follows. 

COROLLARY. Bk,8 cannot be null for s < n, since then a vector w could always be 
found such that WTYk,s = 0, so that, since 

Bk,, = I - Yk, VZk,s WTBk,S = W 

A quasi-Newton method that solves a set of linear equations in a finite number of 
steps will be said to be exact, and we now show that the algorithm about to be de- 
fined is exact according to this definition. Let Hk be arbitrary but nonsingular and 
Xk be arbitrary, and let 

(4.11a) pi= =-H -i , 

(4. 1 lb) xi+1 = xi + piti, 

(4.11c) Yi=f+1-fi, i=k,k+1,*..,k+r-1 

(4.1ld) Hi+, = Hi- Hiy,zT + p,tiq,T 

where ti is arbitrary but nonzero and the otherwise arbitrary vectors zi and qj 
satisfy 

(4.11e) ZiTyi = - i = ki k + 1? .+ * k + r-1, 

(4.11If) ZiTyj = 0, k < i < i < k +r -1, 
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(4 1 * g qiy 
= 

1o tJ 2 i = 
k2 kv l 12 

... 
2 kv l r 2 

(4.11h) qiTyjO= O k <j< i< k+r-l, 

where 1 < r < n. 
THEOREM 2. If the algorithm defined by Eqs. (4.11) is applied to the linear function 

(4.12) f=Ax-b 

where A is an n X n matrix and b an nth-order vector then, with Yk,s as defined by 
Eq. (4.1), 

(AHk+s-I)Yk,3=O, 1 < s < r, 1 < r < n. 

Proof. It follows from Eqs. (4.1), (4.3) and (4.1le, f) that 

(4.13a) Bk,3Yk, j 0 , 

(4.13b) Bk+j,,- jyk,j = Yk,i, 1 i j < s,1 < s < r, 

(4.13c) Bk+j,s-jYk+j,s-i = ? 1 

so that, from Eqs. (4.7), (4.11g, h) and (4.13), 

(4.14) Gk, Yk,s = I, 1< s<r 

where the unit matrix is of order s. Thus, from (4.8), (4.13a) and (4.14), 

(4.15) Hk+sYk,s = Pk,sTk,s , 1 < s < r. 

Now for the linear system (4.14) it is easy to verify that 

(4.16) APk,sTk,s = Yk,s 

so that, from (4.15), 

(4.17) (AHk+s-I)Yk,s = O, 1 < s < r 1 < r < n, 

and the theorem is proved. 
COROLLARY. Eqs. (4.1 le, f, g, h) can be satisfied for r = n only if A is nonsingular 

since they imply that Yk,n is nonsingular, and hence, from Eq. (4.17), that 

AHk+? = I. 

Thus not only is A nonsingular but Hk+? = A-1, and the algorithm is thus exact, 
since a further step must lead to the correct solution. 

We now consider some existing algorithms in the light of the two theorems. The 
only quasi-Newton method for which (4.1le, f, g, h) hold for r = n and all k is the 
generalised secant method, [1], [5], [7], [8]. It follows from Theorem 1 that Bk+? is 
null for all k, so that (4.8) becomes 

Hk+n = Pk,nTk,,Gk,n 

and this, from (4.14), may be written 

(4.18) Hk+n = Pk,,Tk,Yk,n k> 1. 

Eq. (4.18), which is frequently taken as defining the generalised secant method, 
does not specify Hi_ 1 < i < n, and Barnes [1] suggests a possible way of doing 
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this. A minor disadvantage of the method is that every step requires the solution 
of a set of linear equations, although this may be overcome at the cost of storing 
an additional n X n matrix. A more serious disadvantage is that, without some 
modification, it does not appear to work. Although it is an exact method it tends 
to be unstable for strongly nonlinear problems, since either Yk, or Pk.n may be ef- 
fectively singular for some k. Then either Hk?fn is not defined, or it becomes singular 
giving rise to subsequent convergence problems as discussed in Section 3 above. 
Barnes gives a method of overcoming this difficulty but at the cost of complicating 
the algorithm. 

In Broyden's method [2] for solving nonlinear simultaneous equations the 
vectors q*T and Z*T are given by 

q T = z.T = (pHIy*)-j1pFTHi. 

The method is not exact, although when applied to the linear function (4.12) it can 
be shown that 

I IH*-+1-AllI < I IH-. 1-AllI 

for the spectral norms of the matrices concerned. Neither is the method stable for 
although Hi can become singular only after a zero step, it is theoretically possible, 
with the choice of t* given in [2], that p THiyi = 0. This contingency never occurred 
when solving the admittedly limited number of problems described in [2] and could 
be overcome, if necessary, merely by changing the somewhat permissive criterion for 
determining ti. 

If qiT and Z,T are given by 

T = (,y)1- (4.19a) qi _ * 

(4.19b) ZiT = (y-TH yi)-1y,TH, 

the algorithm becomes that of Davidon [3] as subsequently modified by Fletcher 
and Powell [4]. When this algorithm is applied to a nonlinear system, Eqs. (4. 1f, 
h) are not in general satisfied, but if applied to the linear system (4.12) they are 
satisfied provided that A is symmetric and each t* is precisely chosen. If, moreover, 
A is positive definite the algorithm is completely stable, and this feature, coupled 
with the fact that it is exact, makes it very suitable for function minimisation. 

In Section 6 below we discuss algorithms where qiT and Z*T are chosen in a more 
sophisticated manner than (4.19), and it is shown that these algorithms, of which 
that of Fletcher and Powell appears as a special case, are also stable and exact. 
Since they involve an arbitrary parameter, it is hoped that a suitable choice of this 
would lead to an improved algorithm for function minimisation. 

5. Linear Systems with Symmetric Matrices. Although of the methods discussed 
here the generalised secant method is the only one that is exact for a general linear 
system it is possible, if the matrix concerned is symmetric, to construct a number 
of exact methods. In these the vectors qi and z* are not chosen specifically to satisfy 
Eqs. (4.11f, h) as they are in the secant method but are chosen in such a way that 
these equations are satisfied automatically when the algorithm is applied to a linear 
system having a symmetric matrix. The algorithms are thus exact but not neces- 
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sarily stable, and it is seen in Section 6 below that stability is to be associated with 
the positive-definiteness of the matrix concerned or, when the algorithm is used to 
minimise some nonquadratic function, with the convexity of this function. In this 
section we derive some further properties of the general algorithm (4.11) when ap- 
plied to a linear system with symmetric matrix as a preliminary to the discussion 
of the particular algorithms in the following section. In order to simplify the nota- 
tion k is subsequently assumed to be unity and those matrices, e.g. Yk,8, requiring 
a double subscript are written with the first subscript, which is always unity, 
omitted, i.e., Ys. 

THEOREM 3. If the algorithm defined by Eqs. (4.11) is applied to the linear function 

(5.1) f=Ax-b, 

where A is symmetric, then 

tipiTy; = tjpjTyi 

for 1 < i < r and all j. 
Prloof. From Theorem 2 and the postulated symmetry of A it follows that 

Y[T(H +T A-I)v = O, 1 < s < r, 
for any arbitrary vector v. Putting v = p,t, then gives, since 

Apjtj = yj for all j, 

(5.2) s (Hs+lyj pjtj) = 0, 1 < s < r, 

and this, from (4.15), becomes 

TsPsTy YsTpjt, 1< < r, 

proving the theorem. 
Since this result is true for all j it is true for j = s + 1, and with this value of j 

transposition of the last equation gives 

(5.3) ys+TPsTs = ts+lPs+1Ys, 1 < s < r. 

THEOREM 4. If the algorithm defined by (4.11) is applied to the linear function 
(5.1) and both A and H.+, are symmetric, 1 < s < r, then 

PS+2Yj = (a,+1 + 1s+lts+l)ps+lyj < j < s, 
wvhere 

a,+1 = 1 - ts+1(1 + qs+lfs+?) 

and 

s+1 = zs+ lfs+l A 

Pr-oof. From Eqs. (1.3), (2.6), (2.7) and (2.11) it follows that 

(5.4) Ps+2 = ps+la1+l + Hs+lys+l?s+?. 

Thus, from (5.4) and the postulated symmetry of H,+,, 

Ps+2Ys = as+lps+lYs + OS+?yS+lH8?iY8 
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and this, from (4.15) and (5.3), becomes 

pT2Y8 = (a,+1 + 03+?t8+?)pT?lYs 

proving the theorem. 
COROLLARY. If pT+lym = 0, where 1 < m < r - 1, and Hj+? is symmetric for 

j = m, m + 1, ***, r - 1, then pT+2Ym = O, j = m, m + 1, *, r - 1. 
Proof. Repeated application of Theorem 4 with s = m, m + 1, **, r - 1, and 

j = m gives the result directly. 
THEOREM 5. If the algorithm defined by (4.11) is applied to the linear function 

(5.1), where A is symmetric and nonsingular, and moreover Hs+, is symmetric and 
Ps+lys = O for s = 1, 2, * *, r- 1, then 

(5.5a) PjTyj = 0 

(5.5b) yiTHr+lYj =0 1 < i < r <j < r0i,i 
(5.5c) yiTA-lyj = 0, 

(5.5d) pzTApj = 0, 

Proof. From the corollary to Theorem 4 it follows that 

p Ty-0 = O 1 < j < i < r, 

and (5.5a) follows by applying Theorem 3 to this result. Now Eq. (5.5a) may be 
written 

PrTYr = Dr, 

where Dr is an rth-order diagonal matrix, and from (4.15) this becomes 

(5.6) YrTHr+iYr = TrDr. 

Since the product of two diagonal matrices is itself diagonal, this is equivalent to 
(5.5b). Now Theorem 2 gives 

Hr+lYr = A-lYr 

and this, with (5.6), gives 

(5.7) YrTA-lYr = TrDrX 

establishing (5.5c). Now no ti is permitted to be zero, so that Tr cannot be singular 
and Eqs. (4.16) and (5.7) thus yield 

PrTAPr = DrT -, 

establishing (5.5d) and the theorem. 

6. Algorithms for Function Minimisation. If the elements of the vector f are the 
first partial derivatives of the scalar function F(x) and if they are differentiable, the 
Jacobian matrix is symmetric. If F is in addition a quadratic function of x, then f is 
given by 

f =Ax-b 

where A is symmetric and constant, and moreover if F is strictly convex, A is posi- 
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tive definite. The exact methods then xvill, provided that they are stable, minimise 
a quadratic function in a finite number of steps. We examine now two further ways 
of choosing qi and zi and show in each case that the algorithm obtained is exact 
provided that A is symmetric. We further show that the second algorithm is stable. 

Algorithm 1. 

(6.1) q T = Z- T = (y iHiy - t- pyi)l(yiTHi - tip T) 

and ti is arbitrary. 
Algorithm 2. 

(6.2a) q iT - - iy iH 

(6.2b) Z iT = e,yyTH + ftltp,T, 

where 

(6.2c) ai = (1 + #,y,THy,T)/piTy, 

(6.2d) 7i= (1 - #tjpTyj)/yjTHjy, 

f3i is arbitrary, ti is chosen to minimise F and H1 is symmetric. 
THEOREM 6. Algorithm 1 is exact if A is symmetric and nonsingular. 
Proof. The proof is by induction. Assume that 

(6.3a) qiTy, = Z Ty = 1 < i < r 

(6.3b) qiTyj = ziTyj = 0 < j < i < r . 
It then follows from (5.2) with s = r and j = r + 1 that 

(6.4) (yriHr+ tr+iPil)yr = 0 

so that, if q,+1 and Zr+i are given by (6.1), 

qr+lyr = Zr+lYr = 0 

and (6.3) holds with r replaced by r + 1. Now if q1 and z1 are given by (6.1) they 
satisfy (4.1le, g) so that, putting s = r = 1, (4.17) becomes 

(AH2 - I)y1 = 0. 

Since A is symmetric and 

yj = Apjtj, j 1, 

it follows that 

(6.5) (y2TH2 - t2p2T)yi = 0 

So that Eqs. (6.3) are valid for r = 2, and thus for all r, 1 < r < n. The theorem 
then follows by appeal to Theorem 2 and its corollary. 

THEOREM 7. Algorithm 2 is exact if A is symmetric and nonsingular. 
Proof. Again the proof is inductive. Let 

(6.6a) qiTyi = ziTyi = 1 1 < i< r, 

(6.6b) qiTyj = ziTyj = 0 < j< i < r , 
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(6.6c) Hi+, = H+1, 1 < i< r. 

Now tj, 1 < j < r, is chosen specifically to minimise F and since f = grad F this 
implies that fj+i, the value of f at the point where F is minimal, is orthogonal to 
the step vector pj. Thus 

fT1p3t=O < j < r, 
and this becomes, from (2.6), (1.3) and the postulated symmetry of Hj+3, 

(6.7) Pv+lyj =? 1 j< r. 

It then follows from (6.7) and the corollary to Theorem 4 that 

(6.8) Pr+lYr = 0 

and, since Eq. (6.4) is also valid, 

(6.9) Yr+lHr+lYr = 0. 

Thus from Eqs. (4.11d), (6.8) and (6.9), if qr+l and Zr+i are given by (6.2) then 
Eqs. (6.6) are valid with r replaced by r + 1. Since, if qi and z1 are given by (6.2) 
Eq. (6.5) is also valid, it follows from (6.7) that provided H1 is symmetric, (6.6) is 
valid for r = 2 and hence for all r, 1 < r < n. The theorem then follows from 
Theorem 2 and its corollary. 

THEOREM 8. Algorithm 2 is stable when used to minimise a convex function pro- 
vided that H1 is positive definite and 1i > 0. 

Proof. The only denominators occurring in (6.2) are yiTHiyi and p,Tyi, and it 
follows from (4.11a, c) and (6.7) that 

(6.10) piTy, = f THf. 

Hence it is sufficient for stability that Hi is positive definite for all i since in 
that case no denominator can become zero and no Hi can become singular. The 
proof is by induction. Assume that Hi is positive definite. Then some real non- 
singular matrix L can be found such that 

LLT = Hi. 

Define now Qi+i by 

(6.11) Qi+i = xTHi+lx 

where x is an arbitrary nonzero vector, and define u, v, w by 

u = LTf, v = LTX w = LTy., 

where neither u, v nor w is null. Then, from (6.10), it follows that 

(6.12) Pi Ty, = UTU 

and hence, from (4.1ld), (6.2) and (6.11), 

3 Q 
T+1 = T_ _ (V TW) tt(uTv)2 ? Ti (uTuvTw + wTwvTu)2. 

w w u u uTuwTw 

Denote now F(xi + piAt) by Fi + AF. Then, since f = grad F, for At sufficiently 
small it follows that 
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AF _ fiTpAt 

and since pi = -Hif and Hi is positive definite by hypothesis AF will be negative, 
and F reduced, for a positive At. It is thus always possible to choose ti > 0 when 
minimising the function during each iteration so that, if /3 > O, it follows that 

(Qit /UTUWTW)(UTUVTW + WTWVTU) 2 ? 0. 

Thus, if 

(6.14) Qi+ >O, A i= 0 

then, a fortiori, Qi+i > 0, ji > 0. 
Now 

VTv - (vTw)2/wTw > 0 

by Cauchy's inequality, equality occurring only if v = wk, where k is an arbitrary 
scalar multiplier. Furthermore, since ti > 0, 

ti(UTv)2/uTu ? 0, 

equality occurring only if u and v are orthogonal. Thus if oi = 0, Qi+i = 0 only if 
UTW = 0. But 

UTW = fiTHiyi 

and this becomes, from (4.11a), (6.12) and the symmetry of Hi, 

UTW = - UTU 0? 

establishing (6.14). Thus if /3i 2 0, Hi+1 is positive definite if Hi is positive definite, 
and since H1 is positive definite by hypothesis, Theorem 8 follows. 

The stability of Algorithm 1, about which no theorems are proved, depends on 
the choice of ti and if this is chosen to minimise F the algorithm can be unstable. 
The algorithm has not been tested experimentally but as its exactness is inde- 
pendent of the choice of ti it is possible that, if a good criterion for choosing this 
parameter could be found, it might prove to be competitive. Neither has Algorithm 
2, in its most general form, been extensively tested. If /3 = 0, however, the algo- 
rithm becomes the modified Davidon algorithm [4] and in this form has achieved 
considerable success. 

Although the Davidon algorithm is theoretically stable, experiments carried out 
by the author indicate that this stability depends critically upon the accuracy to 
which each successive value of ti is obtained, and indeed for one problem, solved in 
eighteen iterations, ti was negative on twelve occasions, indicating some violation 
of the conditions on which Theorem 8 is based. The number of iterations required 
to obtain the solution also depends on the accuracy of ti and for the problem quoted 
varied between fourteen and twenty-three, the lower number corresponding to the 
least accurate determination of ti. This wide variation of behaviour, which makes 
it difficult to determine the optimum tolerance to be imposed on ti, makes com- 
parison between different methods very risky and it would appear that a thorough 
experimental study of Algorithms 1 and 2 would be in the nature of a major under- 
taking. 
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