
A Modified Monte-Carlo Quadrature. II* 

By Seymour Haber 

1. Introduction. In a previous paper ("A modified Monte-Carlo quadrature," 
Math. Comp., v. 19, 1966, pp. 361-368; I shall refer to it below as "MMC") I pro- 
posed a Monte-Carlo quadrature procedure which incorporated a very simple form 
of stratified sampling and which produces somewhat more accurate estimates of 
integrals than would be obtained by simple Monte-Carlo. As applied to integration 
over the s-dimensional unit cube GS (i.e., GS is the set of all x = (x', x2, , xs) such 
that 0 < xi < 1 for i = i, *, s) the method was as follows: Let ni, n2, *, n8 be 
positive integers, and partition G, into N = nli n2 . - - - - n, congruent subintervals 
by dividing the interval [0,1] on the xi-axis, for each i, into ni equal subintervals. 
Choose one point at random in each of these N parts of GS, and call those points-in 
any order-xi, X2, **, XN; then take the quantity 

1N (1) iNf X, 
( ) 

~~~~N rf(Xr) 

as the estimate of the integral over GS of the function f. 
In the simplest case the numbers ni, n2, , * * ns are all taken equal so that GS is 

partitioned into N subcubes and N = Ks for some positive integer K. The present 
paper proposes a second modification of simple Monte-Carlo quadrature, which 
makes further use of this partition of GS. 

If N is large, so that each of the subcubes into which GS is divided is quite small 
one would generally suppose that the integrand would be a monotonic function of 
each xi in most of the subcubes. Thinking along the lines of Hammersley and 
Morton's method of antithetic variates [1], [2], it would seem that if x is a point 
chosen at random in a subcube and x' is the point symmetrically opposite it in that 
subcube, the quantity 

(f(x) + f(x'))/2 
should have smaller variance than f(x). We therefore define the following estimate 
for fG f: Dividing GS into N = KS subcubes as above, call these subcubes, in some 
order, A1, A2, * * *, AN. For 1 < r < N, let Cr be the center of A r, and choose a single 
point-call it xr-at random in Ar; and let Xr' = 2Cr - Xr. Then our estimate is 

(2) J2 = J2(f, N) _ 1 f(Xr) +f(Xr') 
Nr=1 2 
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(The quantity (1) we shall denote by J1, while "Jo" will designate the simple Monte- 
Carlo estimate 

N 
(3) 1 f(Y') 

where the N points Yr are chosen at random in Gs.) 

2. Error Analysis. The discussion of the error of these estimates is based on the 
usual assumption of Monte-Carlo theory, that the points Yr and the points Xr can be 
regarded as independent (or at least pairwise independent) random variables; in our 
case each Yr iS uniformly distributed over G8, while Xr is uniformly distributed over 
Ar. Then Jo, Ji, and J2 are random variables, and it is easy to see that all three have 
the integral of f as mean value: 

(4) m(Ji)=I= ff i=0,1,2. 
Gs 

(For J2 we note that Xr' is, like Xr, uniformly distributed over A r; so that 

m(J2) = K Z (m(f(xr)) + m(f(xr'))) ZN J E ArfN 

Numerical evaluation of an integral by the formula (1), (2), or (3) then can be 
regarded as taking a sample value of one of the J's as an estimate of the mean l; so 
that the standard deviation of that J may be taken as a measure of the error to be 
expected. On the usual assumption that J is approximately normally distributed, 
there would then be a probability of 1/2 that the error of the estimate is less than 
about (5/8) o-(J), while the chance that the error is greater than 2(J (J) would be less 
than 1/20. 

We set 

(5) o-N (Jo) = oK (Jo (f,y A), OwN (J1) = 0j (J1 (f,y )), O2N (J2) = 0J (J2 (fy N)) 

so that the subscript of o- is equal, in each case, to the number of evaluations of the 
integrand required for the estimate of I. For the simple Monte-Carlo estimator Jo 
we have the well-known result: 

(6) o-N(Jo) = doN-1/2, d = f2 (|f) 

In MMC I showed that (JN(J1) < (JON(O) for any f E L2(Gs); for continuous f, 
oTN(Jl)/lTN(Jo) --0 O as N - oc; and if the gradient Vf exists and is continuous on Gs, then 

(7) o-NV(J1) = d1N (1/2+1/s) + o(-(N1/2+1/s)) di= (L Vf12) 

The first of these three results has no analogue for J2-it may happen that o-2N(J2) 

> o-2N(JO). However, for smooth integrands we have the following: 
THEOREM. If a2f/axax i is continuous on Gs for 1 < i, j < s, then 

(8) 02AT (J2) = (d2 + O (1))N-(1/2+2/s) 

where 
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2 
s 

02f 
2~- f 

/2f 2 

(8') =2 1 ') 1x _ 288 jl1 ( axtax' - 480 '=ls (ax,ax - 

Proof. From the (pairwise) independence of the xr, we have 

(9) 2N (J2) = 1 2 (f (Xr) + f (Xr')) 

Let 

(10) -r = a2 (f (Xr) + f (Xr) NJ ((x) + f (X') - N f (x) +2 f ' dx) dx 2 ~~~r A r 2 XI 
where x' is, as before, the point of Ar symmetrically opposite x. For x E A r, we may 
under the assumptions of Theorem, write 

f(X) = f(Cr) + Z (x - Cr ) (Cr) 

+ (Xi -Cr i)(X Cr') (Cr) + (N ). 

For convenience I shall write "f" forf(cr), "fil" for af(Cr)/ax "f 4fj' for a2f(Cr)/axiax' 

and "ui" forxi - Cri. Then 

(12) 
= f + 2- - 6 bjfi + o (N-2s 

Now NfAr bibi is zero if i # j, while 

NJ (a6)2 = 1N-2/s 
Ar 12 

Therefore 

(13) |~ ~ f(x) + f (W) N -21s s (13) NJAJ JJvdx =f HIv24 fii f o(N-2/s) 

From (10), (12), and (13) we get 

(14) Tr = N - E a ij- Efii + R) 

where R = o(N-2 Is). 

Temporarily writing " " for the total of the two sums in (14) we have 

(15) Tr = N Z2 + 2N RE + N R2. 
Ar Ar Ar 

The last of these three terms is clearly o (N-4 Is); the same holds true for the second 
term, since a = 0 (N-1 Is) and so E = 0 (N-2 Is), and therefore 

1/2 
N RE (N R2N = O(N S) o(N2 

It followsr Ar 
It follows that 
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(16) Tr = NIA (2 aaif - Ef Nj/ 2 o(/A) 
r 2 j,j_j24 +~_ 

Calculating the integral in (16) is facilitated by noting that fAr bibjaKaL iS zero 
unless i,j,K, and L are equal in pairs, and that 

-4/8 -~~~~~~~~~~~4/a 
NJfi (^i)2(Si)2 = N i 1 NJf (ji)4 = N 

Ar ~~~144 Ar80 

We finally obtain: 

N4/8 N 4/a 8 

(17) X N Effj + +f-4/8) 
288 i ij<i 720 + o(N 

From (9), (10) and (17) we obtain 

1-4-4/a 2 _ 1(r N LT2N(J2)-288 1i<E<s EN k cxj9 () 
(18)i,- -N xax 

+ 721 E adx2df (cr) 2+ o(l) 

Each inner sum in (18) is a Riemann sum, which approaches the integral (over G6) of 
the function involved as N -m o. 

Therefore 

(19) 
N1+4/a(2fN(J2) = 288 E< f< ( : 

j) + 70 f (3 )2 + 
o(1), 

and the theorem follows. 
We see then that for smooth functions J2 converges to the integral somewhat 

faster than Jo or Ji. It is interesting to note, also, that J2 is exact for linear inte- 
grands-so that the quantity d2 is not a measure of the deviation of the integrand 
from constancy, as are do and di, but of its deviation from linearity. 

For less smooth integrands J2 may not be superior to J1; but for a large class of 
functions which may even be discontinuous, both Ji and J2 are asymptotically bet- 
ter than Jo, and in fact 

(20) ON(J i) = O(A-(1/2+1/28)) i = 1, 2 

To see this, let f be bounded in GC, and piecewise smooth in the following sense: G" 
may be broken up into a finite number of regions, with smooth boundaries, such 
that in the interior of each region all the second partial derivatives of f are continu- 
ous and bounded. Then for N large the number of subcubes A r which do not lie 
wholly inside a single one of these regions will be O(N'-1'"). For these subcubes Tr 
will be bounded, sincef is bounded on Gr; for the remaining subcubes, Tr = O(N-4 !8) 

as in the proof of Theorem 1. Thus 

a22N(J2) = 1 N BiN + B2N(N4/ 8) 

and (20) follows for J2. In an exactly similar manner it follows for J1, under the 
weaker assumption that the first partial derivatives of f are continuous and bounded 
in each region, using the proof of Theorem 3 of MMC. 
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3. Related Methods. Two modifications of the proposed quadrature method 
were considered, that seem worth some comment. The first is simply a generaliza- 
tion, in which Gs is not necessarily partitioned into subcubes, but more generally 
into congruent subintervals in the manner described in the first paragraph of this 
paper. In MMC the estimate Ji (there called J") was treated in this more general 
manner, and it was seen that there might sometimes be a gain to partitioning the 
different coordinate axes differently. However, this does not seem to be the case for 
J2. If, in the general case, we impose the "regularity" condition of MMC on the 
partitions of G5, and carry through the reasoning of the proof of the Theorem above, 
we obtain in place of (19): 

No_J2 1 1 a&f )2 
02N (2 - Z 2 2J 

(19') 288 lj<i$js fl,fl,n i Unj s (x ox) 

__ (_ I af\2 -4/s) 

While, for given N = nli n2 *. ns, the total of the 2 sums in (19') might be made 
smaller by choosing the n unequal than by choosing them equal, it is not likely that 
one would know in advance how to do this. 

The second modification I considered was an attempt to halve the number of 
evaluations of the integrand needed for a given accuracy. For each Ar, instead of 
evaluating both f(xr) and f(xr'), I proposed to choose at random a number a, in be- 
tween 0 and 1, set xr" = axr + (1- a)xr', and calculate only f(xr"). However, the 
quantity 

N 

does not have mean value I in general, since Xr" is not uniformly distributed on Ar. 
This can be compensated for by introducing a weight factor: For x = (xI, X2, * X*, xs) 

such that -N-1's < xi < N-1 /s let 

(21) (x)= (2N1?s max Ixl) 
s-1 

Then the estimator 

= - 1 ) ((2ar - 1)) (Xr cr)) 
N r= Ir 1 - p((2ar - 1)(xr - cr)) 

does have mean value I. However, it turns out to have infinite variance (though its 
expected absolute deviation from the mean is finite). In some numerical experiments 
on simple integrands, convergence to the integral was not apparent as N was raised 
up to 65,536; so the method seems worthless. 

4. Automatic Error Estimation. One of the attractive features of simple Monte- 
Carlo is the ease with which the error of the quadrature may be estimated. Oncef(yr) 
is calculated for each 1 < r < N, a single arithmetic operation produces f2(yr), SO 
that fG. f2, and so do and ON(JO), can be approximately evaluated in the course of the 
calculation of Jo. In MMC I pointed out a method of evaluating oN(Ji) by, in effect, 
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calculating two independent samples of J1. This method can be extended to J2. In 
each subcube A r one chooses at random two points x, and z, and finds x/ and zr' as 
above. The integral is then estimated by 

(22) J2'(f N) = IN f(xT) + f(X,r) + f(zT) + f(Zr') 
Nr=1 4 

At the same time the quantity 

(23) D2 = D2(f, N) = 2 
N f(Xr) ? f(Xr') - f(Zr) + f(Zr')) 2 1/2 

is calculated; the expected value of D22 is the variance of J2', so that D2 can be taken 
as an estimate of the standard deviation of J2'. The calculation of J2' involves 4N 
evaluations of the integrand f, and 

T4N(J2) = 02N (J2) 

since J2' is just the average of 2 independent samples of J2. This implies that using 
J2' instead of J2 involves a slight loss of accuracy, since by Theorem 1, 

1 
O4N (J2) 21/2+2/s 02N (J2) 

if f is smooth. However, in my experience the importance of having a good estimate 
of the error is so great as to justify this loss of accuracy and the extra effort required 
to calculate D2. 

Usually, in approximately evaluating an integral by the present methods, one 
would calculate J2(f, N) or J2'(f, N) for a few values of N, in ascending sequence. 
When J2' is used, one could, for each value of N, also calculate D2N1122 's. If the 
asymptotic form of 072N(J2) given in the Theorem is, for the last two or three values of 
N used, a good approximation to the standard deviation, D2Nl'2+21 will be close to 
constant and its value (for the last value of N) may be taken as the value of 2-1 /2 d2. 
Further calculations, with higher N, may thereafter be made using J2, and taking 
d2N- (1/2+2 IS) as the standard deviation. 

(For J1, automatic error estimation is achieved by using the estimator 

J1'(f,N) = ) 
E f 

to approximate I, and using 

/N 1/2 
Di (f, N) =2 E (f (Xr) -f (Zr))2) 

as the estimate of the standard deviation of J1'. For convenience I shall also denote 
the above-mentioned estimate of the standard deviation of Jo, i.e., the quantity 

N-1/2 ( f2 (Yr) - (1Ef(r 

by "Do".) 
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TABLE I 

N Do D1i D2 DON1 /2 D1Nl /2+1 Is D2N2 /2+2 Is 

24 .019 .0085 .0030 .078 .066 .048 
34 .011 .0037 .00085 .102 .102 .069 
44 .0064 .0014 .00028 .102 .092 .073 
54 .0044 .00085 .00010 .110 .105 .062 
84 .0018 .00019 .000016 .115 .098 .068 
104 .0011 .00010 .0000068 .113 .099 .068 
164 .00044 .000024 .0000011 .112 .100 .069 

TABLE Ia 

N Eo E1 E2 rO ri r2 

24 - .00673 - .00505 .00159 .35 .59 .53 
34 - .00401 - .00557 - .000039 .36 1.50 .05 
44 .000998 .00080 .000082 .16 .57 .29 
54 .00256 .00097 - .000042 .58 1.14 .42 
84 -.00086 .000065 .0000088 .48 .34 .55 
104 - .00124 - .000090 - .00000104 1.10 .90 .15 
164 - .00023 .0000238 .00000089 .52 .99 .81 

TABLE II 

N Do D1 D2 DoNl /2 D1N1 /2+1 Is D2N1 /2+2 Is 

24 .17 .11 0 .68 .91 .00000 
34 .083 .051 .035 .75 1.39 2.86 
44 .046 .023 .012 .73 1.48 3.14 
54 .029 .013 .0056 .72 1.58 3.49 
84 .011 .0034 .00098 .71 1.74 4.00 
104 .0070 .0018 .00041 .70 1.75 4.08 
164 .0028 .00044 .000064 .71 1.80 4.17 

TABLE IIa 

N Eo El E2 rO ri r2 

24 -.09922 .1363 0 .58 1.24 
34 .07652 .0481 .02627 .92 .94 .75 
44 - .05043 .0372 .00821 1.10 1.62 .68 
54 -.01536 .0261 .000733 .53 2.00 .13 
84 - .00198 .00243 - .000158 .18 .71 .16 
104 - .01132 -.00092 .000020 1.61 .51 .05 
164 - .0002285 - .00066 .0000412 .08 1.50 .64 

5. Experiments. In order to test the accuracy of the error estimates above for 
smooth functions, and to see the behavior of J1 and J2 when the integrand is discon- 
tinuous, three 4-dimensional integrals were calculated. Tables I and Ia present the 
results for the calculation of 
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f f f f (exp [x x2 x x] - 1) dx dx dx dx4 = .0693976 

and Tables II and ILa give the corresponding results for 

JffffJin (Xsin2x(xl + x + x3 + x4 ) dxdX2dX3dx4 = 0. 

Here and below, Eo, El, and E2 are the actual errors of Jo, Jl' and J2' respectively; 
and in each case ri = 1Ejl/D, that is, the ratio of the actual error to the estimated 
standard deviation. 

Table I shows that DoN1 /2, D,N1 /2+1 /I, and D2N1 /2+2 Is were substantially constant 
for K > 3, indicating that the standard deviations were in close accordance with the 
predictions of the Theorem above and of Theorem 3 of MMC. The second integrand 
is more rapidly oscillating, with the result that in Table II D1N1 /2+1 /s and D2N1 /2+2 /s 

are approximately constant only for K > 7. In both cases the D i accurately estimate 
the standard deviations for moderate values of N. The gain in accuracy due to J2' is 
clear, though in comparing Do and D1 to D2, Do should be divided by 2 and D1 by 1.4 
to compensate for the greater number of function evaluations done in the calculation 
of J2'. 

TABLE III 

N Do Di D2 DON11'2 D1N1l/2+112s D2N12+1?/2S 

24 .108 .076 .044 .43 .43 .25 
34 .051 .032 .017 .46 .49 .26 
44 .029 .015 .0080 .47 .48 .26 
54 .019 .0079 .0046 .47 .44 .26 
84 .0073 .0025 .0014 .46 .46 .24 
104 .0046 .0014 .00077 .46 .44 .24 
164 .0018 .00045 .00023 .46 .46 .24 

TABLE IIIa 

N EO El E2 ro r1 r2 

24 .0584 .0272 - .0040 .54 .36 .09 
34 - .0002 .00060 .00287 0 .02 .17 
44 - .0119 - .00408 - .00408 .41 .27 .51 
54 - .0180 - .00118 - .00198 .95 .15 .43 
84 - .0075 -.00310 -.00029 1.03 1.24 .21 
104 - .00108 .000275 .00020 .23 .20 .26 
164 - .00052 .000114 .000041 .29 .25 .18 

Tables III and IIIa present the results of calculating the integral of the function 
given by 

f(x, x2, x, x4) = I if (Xl)2 + (X2)2 + (X3)2 + (X4)2 < 1 

= 0 otherwise. 



396 SEYMOUR HABER 

This function is discontinuous in G4, and so in accordance with the discussion leading 
to (20), we should expect that D1 and D2 would go to zero as N-(1'2+l'2s). The ap- 
proximate constancy of D1N1 /2+1 12s and D2N1 /2+1 I2s in Table III confirms this very 
well for this simple integrand. 

The values of r in Tables 'a, I"a) and "Ia also conform to what is expected on the 
assumption that Jo, J1' and J2' are approximately normally distributed. The r's are 
mostly < 1, and are only rarely as high as 2. In practical calculations, of course, only 
the D i are known and information about the actual errors is to be inferred from them; 
2Di is then a fairly safe ("5% confidence level") upper bound for |Ei|. 

The following integral arose in a physical problem [3]: 

(4 4 A(T) fr/2 
2 07k2 + .01 sin2 0 

(24) ] ] k2 sin 6 2.72w.18 dedk, 
or T we 

where 

w = (4.285k4 + .0414k2 sin2 0) 1/2; 

it was to be evaluated to an accuracy of about 1 part in 100 for various values of the 
parameter T. As the region of integration is a rectangle, it was first attempted to do 
the calculation using the trapezoid rule in each dimension. In one dimension the trap- 
ezoid rule approximation converges as M-2 where M is the number of points used-if 
the integrand is sufficiently smooth. In two dimensions the approximations should 
then converge as M-1. In this case however, they were found to converge only as 
M-1 /2. This is apparently due to the fact that the second derivative, with respect to 
k, of the integrand is infinite at the origin; and so it could not be corrected by substi- 
tuting any higher-order quadrature rule for the trapezoid rule. The calculation was 
then done by the simple and modified Monte-Carlo methods under discussion, and 
the results (for T = 10-5, A (T) = 10-4) are given in Table IV. 

TABLE IV 

N Jo Ji' J21 DoN0 /2 DVN D2N3 /2 

502 .755 .592 .582 3.97 34.4 224 
1002 .634 .590 .588 3.53 46.1 346 
2002 .584 .590 .588 3.20 44.6 354 
4002 .590 .588 .588 3.21 44.8 350 

In this case the integrand satisfied the hypotheses of Theorem 3 of MMC, but 
not those of the theorem of the present paper. Thus the approximate constancy of 
D1N1 /2+1 /8 was expected, but that of D2N1 /2+2 Is was surprising, and indicates a possi- 
bility of weakening the hypotheses of the theorem. Practically, the application of J2' 
was successful: J2' achieved the desired accuracy with M = 10,000, while with the 
trapezoid rule (improved by use of Richardson's "deferred approach to the limit"), 
it was necessary to go up to M = 160,000 and at that the results did not generate 
much confidence, as Richardson's extrapolation differed from the last trapezoidal 
value by about 7%. 

I wish to thank Mr. Charles Mesztenyi of the University of Maryland's Com- 
puter Science Center for doing these calculations. 
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6. Comment. J2' offers the advantage, over J1', of faster convergence to the 
integral. The improvement, for values of N for which the asymptotic error for a 
given level of effort and expressions are fairly accurate, is given by the factor 
(<2d2/di) N-118 by which the standard deviation is multiplied. This may in some 
cases be no improvement at all; d2 might be sufficiently greater than d1 to make this 
factor greater than 1 for all reasonable values of N. Now in calculating, J2', J1' 
can be obtained simultaneously; and D1 can also be gotten with very little extra 
effort. In doubtful situations, where it is not known how high an N will have to be 
used, it is advisable to do this for the first values of N tried, after which it can be 
seen whether J1' or J2' is the better estimator for the specific integral being studied. 
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