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1. Introduction. The problem of finding rational approximations to functions has 
received a considerable amount of attention recently, and many methods exist for 
finding such approximations. A brief survey of the most widely used methods has 
been given by Cheney and Southard [1]. In all problems of approximation, it is es- 
sential to know the truncation error which arises when the function is replaced by 
its approximation. Ideally, one would also like to have a realistic a priori estimate 
of this error. However such estimates are not in general easy to obtain. For ex- 
ample, in the case of polynomial approximations to a function, the truncation error 
can frequently be expressed in terms of a higher derivative of the function at some 
indeterminate point. Even in cases where the nth derivative of a function may be 
readily obtained, an estimate of an upper bound of the truncation error obtained 
by considering upper bounds of the higher-order derivatives is frequently much 
larger than the actual truncation error. Consequently such an estimate is not very 
useful for making an a priori estimate of the degree of the approximation to be 
used. For polynomial approximations, realistic estimates for the truncation error 
can sometimes be found by first of all expressing the truncation error as a contour 
integral, and then making use of asymptotic methods to evaluate this integral. It 
has been observed that if we approximate a function f(x) by a polynomial pn(X) of 
degree n, then an asymptotic estimate of this contour integral form of the trunca- 
tion error for large n, frequently gives a good estimate of the error even for small 
values of n. In this paper we shall show that a similar approach can also be used 
for certain rational approximations, to give excellent a priori estimates. 

Suppose that we wish to approximate a given function f(x) by means of a 
rational approximation pm(x)/qn(x), where pm(x) and qn(x) are polynomials of de- 
gree m and n respectively. In this paper we shall consider only the so-called Pade 
approximations to f(x). These approximations are such that if we consider the ex- 
pansions of f(x), pm(X) and qn(x) about x = 0, then 

(1.1) f(X)qn(X) - Pm(X) = (xm+n+l) 

where (xk) denotes a power series beginning with the term in xk. An excellent intro- 
duction to these approximations has been given by Wall [2]. In particular, we shall 
be interested in the main diagonal elements of the Pade table where m = n. For 
certain functions these particular rational approximations may be obtained as the 
odd convergents of their continued-fraction representation. These examples have 
also been discussed by Wall [2], but his main concern has been with the regions of 
convergence of the continued-fraction representations and not directly with esti- 
mates of the truncation errors of the convergents. 
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Following the observations of the first paragraph, we shall first obtain an ex- 
pression for the truncation error Rm,n(x) where 

(1.2) Rm,n(x) = f(x) - pm(x)/qn(x), 

in the form of a contour integral. For certain hypergeometric and confluent hyper- 
geometric functions we shall then find explicit forms of Rn,,(x), and consider the 
behaviour of these for large n. 

Such results have been previously given by Luke [3], who has amply demon- 
strated the usefulness of asymptotic techniques for giving excellent a priori esti- 
mates of the truncation error. Although the estimates given in this and Luke's pa- 
pers are the same, the methods of development are quite different. Luke's starting 
point was some results previously obtained by Laguerre [4], who showed that for 
functions satisfying certain linear first-order differential equations, one can derive 
differential and difference equations for both the denominator polynomials qn(x), 
and also the function qn(x)f(x) - pm(x). In this paper we have used a rather more 
direct approach which has the advantage of showing under what conditions an es- 
timate of the error may be made, and also leads directly to the evaluation of this 
error. 

2. An Expression For The Truncation Error. In this section we shall derive an 
expression for the truncation error Rm,n(X) of Pade approximations to a function 
f(x) in terms of a contour integral. There is no need to restrict the argument x to 
being a real value, and we shall consider the complex value z = x + iy. Let us 
suppose that f(t) is defined in the complex t-plane, and that t = z is a particular 
point in this plane. In the subsequent analysis we shall consider a contour C in the 
t-plane which satisfies the following conditions: 

(i) the points t = 0 and z are inside the contour C, 
(ii) the function f(t) is holomorphic on and within C. 
First let us consider the Taylor series expansion for the function f(t) about the 

point t = 0. We have (see Whittaker and Watson [5]), that at the point t = z, 

_n_1 f (t) dt 
(2.1) f(Z) = 5(Z) + 27ri (t -Z)tn+1 

where 5n(z) is a polynomial of degree ?n. Next, for our Pade approximation we 
have 

(2.2) f z) (= ) + R (z) 

which in terms of our previous notation we can write as 

(2.3) qn (z)Rm,n (z) q= (z)f (z) - P.(Z) = (Zm+n+l) 

Equation (2.3) shows that the problem of finding Rm,n(Z) is equivalent to that of 
finding the truncation error of a polynomial approximation to the function 
q,(z)f(z), of degree Am + n. From Eq. (2.1) we have immediately that 

(2.4) Rm,n(Zy) = qm+n+l I_ q l (t)f(t)dt 
qn (z) 2wri JC(t _-)rn 
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which is the required form for the remainder. It may be noted here that equation 
(2.3) also gives immediately the algorithm for determining the polynomials pm(z) 
and qn(z). If Ck(g) denotes the coefficient of zk in the power series expansion of a 
function g(z) then the algorithm is given by 

(2.5) Ck[q.(z)f(z)] = Ck[Pm(Z)] for k = O(1)m 

Ck[q. (z)f(z)] = 0 for k = (m + ?) (1) (m + n) 

These (m + n + 1) conditions are sufficient to determine the (m + n +2) co- 
efficients of pm(z) and qn(z); the further condition may be arbitrarily prescribed since 
we are considering the ratio of two polynomials. One frequently chooses the poly- 
nomial qn(z) so that qn(O) = 1. 

From Eq. (2.4) we see that an a priori estimate of the truncation error Rm,n(Z) 

may only be obtained in those cases where we know the explicit form of the poly- 
nomial qn(z). For certain hypergeometric functions, it is known that the denom- 
inator polynomials for the main diagonal Pade approximations of the form pn(z)/qn(z) 
and the off-diagonal approximations of the form pn_i(z)/qn(z) can be expressed in 
terms of Jacobi polynomials. For certain limiting forms of the hypergeometric func- 
tion, the denominator polynomials are also given in terms of the corresponding limit- 
ing forms of the Jacobi polynomials. The details of this are given in Sections 4 and 5. 

In the next three sections we shall consider the problem of evaluating the trun- 
cation error only for the rational approximations of the form pn(z)/qn(z). Similar 
results for the approximations pn_i(z)/qn(z) to these functions may be obtained in 
an analogous way. Since these results have also been given by Luke [3], we shall 
consider them no further in this paper. 

3. The Hypergeometric Function 2F1(1, w; 1 + X; z). We shall begin our analysis 
by considering the function 2F1(1, co; 1 + X; z), and we shall assume throughout 
that both co and (X - co) are greater than -1. For this function we can obtain the 
truncation error Rn,n(z) explicitly as the ratio of two hypergeometric functions, 
whence we can obtain an estimate of Rn,n(z) for large n in terms of elementary 
functions. Furthermore, from the explicit representation of the truncation error in 
this case we can obtain the truncation errors for two further functions 4(1; 1 + X; z) 
and z-'T(1; 2 - co; z-1). These are discussed in Sections 4 and 5 respectively. 

The starting point of our analysis is the known continued-fraction representa- 
tion for the function 2F(1, co; 1 + X; z). This is given by (see Wall [2]), 

1 b1z b2z b3z b4Z 
(3.1) 2F1(1, co; 1 + X; z) = -1 1? 1? 1?1 ... I 

where the coefficients bk are defined by 

(32)bk+1= 
(k?w c) (k?X) an_2+ (k?+1)(k?+X-cow?1) 

(2k + X)(2k + X + 1) and b2k(2 k (2+ + ? -1)(2k X ? 2) 
The continued-fraction representation, Eq. (3.1), converges for all values of z in the 
complex z-plane cut along the positive real axis from 1 to oo. From the odd con- 
vergents of this continued fraction we obtain the rational approximations pn(z)/qn(z) 
with pn(O) # 0, where the denominator polynomials qn(z) are given by (see Wall [2, 
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Eq. (89.20)]), 

(3.3) q. (z) = P(n + X + 1) P(n + 1) (_ Z)npn(w 
x_@) 

(I - 2z-1) 
]P(2n ? X ? 1) (z)P(x(l-2) 

The polynomial P(a) (x) denotes the Jacobi polynomial. From Eq. (2.4) we can 

write the remainder Rn ,n(z) for this function in the form, 

Rn,n(z) = 
(-Z)npn(co-c)() -2z-1) 

(3.4) where I(z) = 2wiC (_t) Pn ( IX)(i - 2t1)2F1(l, o; 1 + X; t) dt 
2 -xi ~~~(t _- )2+ 

In order to evaluate the function I(z), we choose the contour eC as follows: (i) a 
line AB just above and parallel to the positive real axis from t = 1 (the point A) 
to t = p (the point B), where p is large, (ii) a large circle of radius p, centre at the 
origin, from the point B to the point C (t = pe2Xi), (iii) a line CD just below and 
parallel to the positive real axis from C to the point D (t = 1.e2 i), and finally (iv) 
a small circle of radius r, centre at t = 1 from D to A. The contour C, is described 
positively in the sense ABCDA as given above. It is not difficult to show that the 
contributions to I(z) from the circles of radii r and p, tend to zero in the limits as 
r -* 0 and p -* oo. 

Along AB, we can write t = (u + 1)ei? and along CD, t = (u + 1)e2ri. On 
taking the limits as r - 0 and p -* oo, we find 

I(z) _ (-1 1)+ 
27ri _ O u+1-z) (u + l )n 

(3.5) X {2F1(1, co; 1 + X; (u + 1)e,') - 2F(1, co; 
1 

+ X; (u + I)e2i)} du . 

From the continuation formulae for the hypergeometric function (Erdelyi [6, p. 63, 
Eq. (17)]), we have, after some simplification, that 

2F1(I, co; 1 + X; (u + 1)e0) - 2F1(I, co; 1 + X; (u + I)e2,i) 

(3.6) 2(7ri F(X + l) 1\u (I?1 
- r(X- co+ 1)P(co) u+l (u +l 

From equations (3.5) and (3.6) we have, 

I(z) - r(X + 1) J(Z) r x- co ? 1)P(w 

(3.7) up(x_w,w)(1 - 
) 

where J(z) = i( ? du. ? (u ? 1- z)(u ? 1),4,+' 

Here we have made use of the relation that P(,#) (x) = (-1)nP (a)(-x). Finally, 
in order to evaluate the integral J(z), we make a further change of the variable of 
integration from u to v, where v = (1 - u)/(I + u), so that -1 < v < 1. On using 
Rodrigues' definition for the Jacobi polynomial, we have 
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(3.8) J(z) = ( 1)+X 1 [2- + )] dn [(1 - v)n+X-w (1 + V)n+ldv. 
r(n + 1)22? 12-zl+ ) V 

On integrating n times by parts and making use of the relation 

dn [ (1 + V)1 2nr(n + 1) 
dvn L2 -z(l + v)i [2- z(1 + V)] ]+1 

which may be readily proved by induction, we find that 

(3.10) J (z) 1 f1 ~ (1_ - )nx(l + v)n+wd 
2310 [2 - z(1 + V)]n+l 

If we make a further change of the variable of integration from v to (1 + v)/2, and 
use the definition of the hypergeometric function as given in [6, p. 114, Eq. 1], we 
find that 

J _ P(n+X - w+ 1)P(n+co+ 1) 
(3.11) (z) r(2n + X + 2) 

X 2Fi(n + 1, n + w + 1; 2n + X + 2; z) 

for all n = 01, 2, *, provided Iarg (1 - z)I < r. 
From Eqs. (3.11), (3.7) and (3.4), if we also represent P, w)(1 - 2z-1) as a 

hypergeometric function (see Szego [8, Eq. (4.21.2)]), we have the required ex- 
pression for the remainder Rn,n (z); 

R_-(-i)wr(X + 1)r(n +- )r(n + X - C + 1) n+1 
P(2n ? X + 2)r(x - w+ 1) 

(3.12) 2F,(n + 1, n + w + 1; 2n + X + 2; z) 

x 2F(-n, n + X + 1;co + Iz-1) 

This result as it stands is not very convenient for numerical work. However, if we 
assume that n is large, then we may obtain an asymptotic estimate for Rn,n(z) in 
terms of elementary functions. From the asymptotic forms of the hypergeometric 
function 2F,(a, b; c; z) for large a, b and c [6, p. 77, Eqs. (16) and (17)], we find, 
after some algebra that, I 

Z _ 2Pr(x + 1) z2n+1(1-Z) 
(3 (x - c + 1) r (co) { 2 - z + 2 (1 Z)1/2}2n+X+1 

(3.13) XI1Otl) 

for Iarg (1 - z) I < 7r. For noninteger values of a, we define (1 - z)) to be that 
branch of the function which has the value + 1 when z = 0. 

Eq. (3.13) has previously been obtained by Luke [3, Eq. (4.9)], although as 
mentioned above, his method of derivation is somewhat different from that de- 
scribed in this paper. However, as Luke has shown, Eq. (3.13) although obtained 
from equation (3.12) under the assumption that n is large, does give excellent 
estimates of Rn,n(z) even for small values of n. In the particular case of X = w = 1, 
z - -2, Luke has shown that equation (3.13) gives Rn,n(z) correct to one significant 
figure for values of n as small as 1. Such accuracy is quite sufficient for an estimate 



TRUNCATION ERRORS IN PADE APPROXIMATIONS 403 

of the error; moreover, for given values of X, w and z, the evaluation of RJ,n(z) from 
Eq. (3.13) for various values of n may be readily made. 

4. The Confluent Hypergeometric Function 4b(1; 1 + X; z). From the results of 
the previous section we can readily obtain similar results for the truncation error 
in the main diagonal Pade approximations of the confluent hypergeometric function 
1(1; 1 + X; z). Luke [3] discusses this case by repeating his analysis from the same 
starting point as the hypergeometric function 2F1(1, co; 1 + X; z). However, we 
shall derive the results of this section directly from Eq. (3.12). It is well known 
that if, in the hypergeometric function 2F,(a, b; c; z), we replace z by zlb and take 
the limit as b -> oo, we obtain the confluent hypergeometric function iP(a; c; z), i.e. 

(4.1) 4f(a; c; z) = lim 2F, (a, b; c; z/b) . 

In Eq. (3.12), let us replace z by z/co and take the limit as co - oo. Then the 
truncation error in the main diagonal Pade approximations to the function 
1(1; 1 + X; z), which we shall also denote by Rn, (z) is given by 

(4.2) R,(z) 1-npX(-1)(? + 1)r(n + 1) z2,+ 1(n + 1;2n + X + 2;z) 
F(2n + X + 2) T(-n; -2n - X; -z) 

The function T4(a; c; z) is as defined by Erdelyi [6, Chapter VI]. Since n is an integer, 
we have [6, p. 257, Eq. (7)], 

(4.3) TI(-n; -2n - X; -z) = (2n?+ 
X 

++ 1) 1t(-n; -2n - X; -z) . 
P(n ? X ? 1) 

If we also apply Kummer's transformation [6, p. 253, Eq. (7)] to the confluent 
hypergeometric function appearing in the numerator of the right-hand side of 
equation (4.2), we find, 

R, (Z)_ (-_)np(X + 1)P(n + 1)P(n + X + 1) 

(4.4) r(2n + X + 2)r(2n + X + 1) 

z 2n+ lez(n+X+ 1;2n+X+ 2; -z) 
(D(-n; -2n -X; -z) 

This equation gives an exact representation of the truncation error. Before con- 
sidering its asymptotic form for large n, it is of interest to note that in the particular 
case when X = 0, we can represent the error in terms of the modified spherical Bessel 
functions. When X = 0, the confluent hypergeometric function 1(1; 1 + X; z) is 
simply the function ez, and we have directly from equation (4.2) that the truncation 
error is given by 

(4.5) RnJ, (z) = (1)e+1z fl.+1/2(-z/2) 

This explicit form of the truncation error appears to have been overlooked by Luke 
[3], (see his Eq. (4.17)). 

Returning now to the general case, we can obtain from equation (4.4), the 
asymptotic form of Rn]n(z) for large n. Luke [3, Eq. (4.10)], has shown that 
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(4.6) 4(-n; -2n - X; -z) = 4(n; 2n + X; -z)I1 + O 

If we now make use of the known asymptotic form of the function 4b(a; c; z) when 
both a and c are large and positive [6, p. 280, Eq. (17)], we have, 

(4.7) Rn,n (Z) = (-1) z2?ez F (r~~f+ m4{+ Oi) ) 
(_l)n2ff+leZr(\2n+ X+) (+2)r(2n + A. + 1) ( n ] 

which is valid for all values of z. Eq. (4.7) may be simplified further if we use the 
duplication formula for F(2n + X + 2) together with the fact that for large n, 

r(n + a)_ n ~1 + o()} 
r(n+) n- 

We then find 

(4.8) Rn,n (Z) =(1)nz2n?1ez VITr(x +1i) +0 
(\/n 22f+X+l r(2n + X + 1)t1 ' n) 

which agrees with a result of Luke's [3, Eq. (4.15)]. 

5. The Function z-"'(l; 2 - w; z-j). To conclude our analysis we shall again 
consider a limiting form of the hypergeometric function. If, in the function 
2F1(1, w; 1 + X; z), we replace z by -Xz and consider the limit as X -+ 0, we ob- 
tain the function z-"*(l; 2 - w; z-1). This is a particular example of the more gen- 
eral result [6, p. 257, Eq. (3)], 

(5.1) liM 2F1(a, b; c; cz) = 2Fo(a, b; z) = (--) J(a; a - b + 1; -z') 

The function z-"T(1; 2 - w; z-1) is a many-valued function and we shall consider 
its principal branch, which is holomorphic in the z-plane cut along the negative real 
axis. The continued fraction representation of this function has been discussed by 
Wall [2], who denotes it by Q(1, w; -z). 

In order to obtain an expression for the truncation error Rn,n(z) let us again 
start with Eq. (3.12). On replacing z by - Xz and taking the limit as X --> oo, we 
find 

(5.2) Rn,n(z) =-rF(n + 1) I(n + 1; 1- w; z1) 
~(n; w + 1; z-1) 

Again, this result is exact. In order to find an asymptotic estimate of Rn,n(z) for 
large n, it appears more convenient first to express the T function as a Whittaker 
function (see [6, p. 264, Eq. (4) and p. 265, Eq. (8)]), and the 1 function as a gen- 
eralised Laguerre polynomial [6, p. 268, Eq. (36)]. We have 

(5.3) R (z) - Fr(n + w + 1) e11 2Wk,,/2 (1_/z) (5.3) Rnn (Z) = - 
'2(w) 

where k = n + (w + 1)/2. We can now make use of readily available results for 
the asymptotic form of the Whittaker function and' Laguerre polynomial, to ob- 
tain the required asymptotic form for Rn,n(z). From results given by Slater [7, Eq. 
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(4.4.35)] and Szeg6 [8, Eq. (8.22.3), where we have replaced n by k], we obtain 
after some algebra, 

2,7r e1/Z -4 (klz( 1)} 
(5.4) R.~, (z) = __ e e Ik)/{ + 

which is valid for I arg zl < 7r. For noninteger values a, we take za to be positive 
when z is real and positive. This result agrees with that given by Luke [3, Eq. 
(4.26)], and again, as he has demonstrated, it can provide an excellent estimate of 
the error even for small values of n. 

6. Conclusion. In this paper we have considered the problem of finding realistic 
a priori estimates of the truncation errors incurred when certain functions are re- 
placed by rational approximations obtained from the main diagonal elements of 
the Pade table. Although an expression for these truncation errors in terms of a 
contour integral is readily derived, we see that a priori estimates for these errors 
can only be obtained if the denominator polynomials in the rational approxima- 
tions are known explicitly. For certain related hypergeometric and confluent hyper- 
geometric functions, these polynomials are known explicitly and it has been shown 
how realistic estimates of the truncation error may then be obtained. (For specific 
elementary functions which are members of this set of hypergeometric and con- 
fluent hypergeometric functions, the reader is referred to the extensive lists of such 
functions as given by Abramowitz and Stegun [9, Chapters 13 and 15].) 

For the functions considered in this paper, we have been able to represent the 
truncation error explicitly in terms of the ratio of two hypergeometric (or confluent 
hypergeometric) functions. From these explicit results, we have then quoted the 
well-documented appropriate asymptotic forms of these functions in order to ob- 
tain estimates of the truncation errors in terms of elementary functions which are 
readily evaluated. However, this should not conceal the fact that estimates of the 
truncation error can be obtained directly from the contour integral expression by 
making use of approximate methods of evaluating integrals such as Debye's method 
of steepest descents. For a description of such methods, the reader is referred to 
de Bruijn [12]. 

Finally, we note that the particular asymptotic expansions for the truncation 
errors as given here are not the only possible ones. For example in Eq. (3.12), it 
might be desirable to use uniform asymptotic expansions for the hypergeometric 
functions occurring in this equation. Such expansions have been given by Elliott and 
Robinson [10], who obtained them using theorems due to Olver [11]. 
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