On the Distribution of Parity
in the Partition Function

By Thomas R. Parkin and Daniel Shanks

1. Introduction. Let p(n) be the number of (unrestricted) partitions of »n, and
define p(0) = 1. Then p(n) is generated by

© © © -1

(1) p(n)z" = H 1 _ {1 + Z (_1)n[xn(3n—1)/2 + xn(3n+l)/2]} )
n=0 n=1 (1 —_ ,’1;") n=1

There is little known about p(n) modulo 2; in particular, there are no known criteria

for the parity of p(n) comparable in simplicity with Ramanujan’s famous sufficient
condition for divisibility by 5:

(2) 5] p(5k +4).

Kolberg [1] proved, but by contradiction and without identifying the arguments
n, that i nitely many p(n) are even, and infinitely many are odd. His proof is
almost as simple as Euclid’s proof that there are infinitely many primes, but like
that proof it offers only very little more in the way of exact information concern-
ing questions of distribution.

From Gupta’s tables [2], [3] we find the following cumulative distribution into
odds and evens for 0 < n < 499.

i n =99 ] n = 199 n = 299 l n = 399 n = 499
odds | o8| 11 171 | 2 277
vens | 42 | 89 129178 223

In the absence of any known reason to the contrary, and because of the rather un-
smooth recursion for p(n) implied by (1), it would be natural to guess that the
evens and odds are equinumerous, i.e., that the ratio of their counts has the limit
1 as the upper bound for n — «. But the early preponderance of the odds, as just
tabulated, would make us hesitate to conjecture that this is true. Nonetheless, it
seemed to us not unlikely that this early preponderance might wash out as later
returns came in (from upstate, so to speak). But it does seem unlikely that a theo-
retical proof of this could be attained with known techniques.

We have therefore examined the question empirically with a computer, and
have put an even stronger question. Consider the number m = 1.74264258- - -,
which when written in binary:

3) m = 1.10111110000111011101 - - -,

has its kth bit to the right of the binary point 0 or 1 according as p(k) is even or
odd. (m stands for Major MacMahon.) We now ask if m is normal with respect to
the base 2. If so, this not only implies the previously supposed equinumerosity, but
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also implies that all possible pairs, 00, 01, 10, and 11, have an asymptotic density
of %, ete.

Here, however, we must note that the corresponding proposition modulo 5 is
definitely false. Thus, if

(4) r = 1.12302102021210112002 - - -

is a number written in quinary with its kth place = p(k) modulo 5, we know from
(2) that r is not normal. In fact, r is not even simply normal since it is further known
that more than 209, of the p(n) are divisible by 5. For, in addition to (2), Morris
Newman shows, in the following paper [4], that

6) 5|p(5-19%k + 15147)
also, and still other independent linear functions also have this property. (A. O. L.
Atkin has obtained more general results; these will appear in [5].)

One of our reasons for stressing this failure modulo 5 is because of the character
of our main problem. Suppose, for instance, that our empirical investigation shows
that parity does appear to be equinumerous, and even normal. Then one might well
remark: “So what? Isn’t that what one expects?”’ But the failure modulo 5 puts
the problem in a more interesting light.

We have determined the parity of p(n) up to n = 2,039,999. In what follows
we will indicate our method, our results, and some related investigations.

2. Notation and Nomenclature. Let a, be the nth bit of m in (3):
(6) a, = p(n) (mod 2) .

Let the finite sequence

Amlm+10m+2 * * * Qmyk—1
be called the mth k-tuple. Thus 1101 is the Oth 4-tuple and 11111 is the 3rd 5-tuple.
There are 2% possible types of k-tuple, and let us designate these 2* types by the
integer, which, when written in binary, is the k-tuple itself. Thus 1101 is the 13th
type of 4-tuple and 11111 is the 31st type of 5-tuple. Let
®

2 (n)

t

be the number of ¢ type k-tuples that appear to the left of, but not ncluding, the
nth k-tuple. (We find it convenient, because of (11) below, to count the Oth k-tuple
here, and therefore to omit the nth, so that the argument n in > ® (n) means that
n k-tuples have been counted.) Thus, from (3),

@ @ @ @
;(10)=2, 21;(10)=1, ;(10)=2 ;‘(10)=5
and referring to our previous table,
& &)
> (500) = 223, D (500) = 277.
0 1

Then equinumerosity means
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(1) (1) 1

while the stronger normality means that

(k)

8) Zt (n) ~27"n

asn — oo for all ¢ and all k.
Note that if one has counted the k-tuples 3 (¥’ (n), one can obtain the counts of
J-tuples with j < k simply by addition. Thus
® ® )

SmH+Em=3m,

and generally
*) *) (k=1

9) ;W+Zw=;w

2t+1

for all k and all ¢.
To test normality we have counted the 256 types of 8-tuples out to n = 2-10°,
and we deduced from these the counts, successively, of 7-tuples, 6-tuples, etc.

3. Computing the Parity Individually or En Masse. That the first two terms of
equation (1) are equal is fairly obvious. For the simplest proof of the equality of
the second and third terms, see [6]. Together, these equations imply Euler’s recur-
rence: Forn = 1,

(10) p(n) =p(n—1)+prn—2) —ph —5) —pr =17)

+ o (=) P — )
where e¢; = % 4(37 F 1), and where the series breaks off just before n — e; becomes
negative. One may thus compute the a, en masse by recurrence using (10) modulo
2. For n large about % (6n)!/2 terms are needed to compute a, if the previous a,_.;

are already known.
But MacMahon [7] found the more efficient recurrences:

Qtn = O + Qp7 + Gy + -+ + Gue; With a; =48I F 1)
Qinp1 = Qn + Qo+ Qo1 + -+ - anp, with ;= <(8 F 3)
Ont3 = G + Gug + Gn1z + ++ + Guey; with ;= <(8 F 5)
Qinis = Gn + Q1 + Qs+ -+ + Gus; with 8; = ¢(8¢ F 7)

(Note that 4n 4+ 2 = 4(n — 1) + 6, but the formulas are neater as given.) We
will give a proof of (11) presently. For now, let us note the savings possible.

(1) The number of terms for a, (not a,) with n large is now ~% (2n)'/? so that
the use of (11) requires only + 3/8 = 0.2165 as much arithmetic as the use of (10).

(2) To compute a, out ton = N we now need to save the a, only to n = [N/4],
so that only 0.25 as much storage is necessary.

Aside from this more efficient computation en masse, there also arises the pos-
sibility of iterating (11), and thus of computing an individual a, with no mass

(11) (mod 2).
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storage whatsoever, since each application of (11) reduces the arguments by a
factor of 4. We will discuss this possibility briefly later.

4. MacMahon’s Congruences. In [7] MacMahon gave a proof of (11) based upon
self-conjugate partitions, and in [8] he used (11) to compute the parities out to
n = 1000. Subsequently, independently, and in effect, but not explicitly, G. N.
Watson [9] reproved (11) using theta functions. Still later, H. Gupta [10] gave still
another proof, this time using Ramanujan’s tau function.

Perhaps the most direct proof, since it involves knowledge of none of these
special concepts or functions, is this: Since

1 1

1—w"=1+x +2"+ - =1—-2"+2 —.“=1+x" (mod 2)
we have
1 _ 1
QA—2)1—2)1 =2 (Q—-2)0+2HQ-2HQ+2 .-
_ A=g)  (A=g) g9
Q-2 —2HQ —2YQA —2°) -+
Thus

| | e

H = H an " H on—1 (mod 2) .
=11—2x =11 —x

Since the product on the right equals 3,_o 2#®+ 2 (see [11] for the shortest proof)
we have

(12) ; p(n)x" = 7; p(n)z* 7; LD/ (mod 2) ,

and comparing like powers of x, congruences (11) follow quickly.

It may be of interest to indicate the quite extraneous considerations that led us
to this problem. One of us was in the process of reviewing [12] The Groups of Order
2% (n £ 6), by Marshall Hall, Jr. and James K. Senior, Macmillan, New York,
1964. The abelian groups there are designated as belonging to a family T'y, and the
number of such groups of order 2” is, of course, p(n). It may be noted, see pages
103-104, that the lattice diagrams of these groups suggest that they fall into dual
pairs. The question of whether p(n) is even or odd is therefore the question of
whether there are an even or odd number of lattices which are self-dual.

This leads one to consider self-conjugate partitions and thus to rediscover (11)
with (essentially) MacMahon’s proof. But the proof above is somewhat simpler.
Naturally, after having ‘‘discovered’ the efficient congruences (11), one is eager to
exploit them.

5. Normality. We show in Table 1 the value of 3 m = .676- - - in octal to 3200
places. In this one can read a, for 0 < n =< 9599. We have placed in the UMT
file of this journal the complete 213-page value of $ m out to n = 2,039,999. In
Tables 2 and 4 we list the counts of the 8-tuples > ® (n) for ¢ = 0(1)255 and
n = 10°% and 2-108, respectively. For example,
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(8) (8)
> (10%) = 3952 and . (2-10%) = 7916.
0 12

These tables are read first across, and then down, for increasing i.

From Tables 2 and 4 we compute the counts of k-tuples for k = 7,6, ---, 1
at n = 10% and 2-10%, respectively. This is done by use of the recursion (9), and
the results are listed in Tables 3 and 5 in the obvious way. Thus

N (6) (5)
>0 (10% =7900, > (10%) = 15848, > (2-10%) = 62655 .
0 1 2

The initial impression of this data is that no type of k-tuple is favored over
other types, that the various types are equidistributed, and that the data here is
consistent with the hypothesis of normality. We have attempted no elaborate sta-
tistical tests of this, but we did examine Good’s psi-square serial test [13], [14] to a
limited extent. Let

2 _ ok —1 2= (@ —k 2
(13) v = 2 g Zt(n)—Zn .

Good showed that if the bits of a binary number are random, then ¢, has an
expectation 2% — 1. We list these ¢,? for k = 1(1)6 and n = 105, 210 together with
their expectation in Table 6.

TABLE 6
k n = 108 = 2.108 Ezxpect.
1 0.796 0.506 1
2 1.631 1.192 3
3 7.737 2.662 7
4 23.106 9.429 15
5 44,329 21.770 31
6 87.733 56.850 63

Now note: We are testing here for randomness, but we are really interested in
normality. The former implies the latter, but what of the converse? The data in
Table 6 is consistent with randomness, and therefore also with normality. At n
= 2-.10°% (but not at n = 108) the distribution is even ‘“too good.” It seems to us
conceivable (but admittedly, we are now going somewhat beyond our competence)
that real numbers may exist with the ¢, consistently too small. While such be-
havior would not be random, it could still imply normality—in fact, the smaller
the ¢, are, the better.

6. Equinumerous Evens and Odds. Turning now to k¥ = 1 in greater detail—
and the question whether even and odd partition numbers are equinumerous—we
list in Table 7 the number of odds, > (n), and the ratio of odds to evens
2O m)/22® (n) for n = 50,000(50,000)2 - 10°.

Since these steps An = 50,000 are large and therefore do not allow a completely
accurate picture of the variations in the ratio function, we supplement Table 7 with
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the description in Table 8. This lists 11 regions, A through K, within each of which
the ratio remains continually greater than 1, or continually less than 1. Thus, the
early preponderance of the odds, that we already noted, continues throughout region
A until n = 6672. Between these regions there are many small oscillations of the
ratio function around the value 1. For example, between regions G and H, the
difference:

odds — evens

varies between 456 and —65, and the ratio equals 1 for 176 different values of n
(including, as in Table 7, n = 400,000).

TABLE 7
n-10—* Odds Ratio n-10—* Odds Ratio
5 25016 1.00128 105 524597 0.99847
10 50200 1.00803 110 549632 0.99866
15 75041 1.00109 115 574646 0.99877
20 99766 0.99533 120 599770 0.99923
25 124703 0.99526 125 624669 0.99894
30 149758 0.99678 130 649700 0.99908
35 175105 1.00120 135 674581 0.99876
40 200000 1.00000 140 699672 0.99906
45 225123 1.00109 145 724763 0.99935
50 250016 1.00012 150 749745 0.99932
55 274917 0.99940 155 774859 0.99964
60 299972 0.99981 160 799757 0.99939
65 324951 0.99970 165 824694 0.99926
70 349834 0.99905 170 849627 0.99912
75 374718 0.99850 175 874724 0.99937
80 399531 0.99766 180 899622 0.99916
85 424656 0.99838 185 924804 0.99958
90 449744 0.99886 190 949733 0.99944
95 474475 0.99779 195 974570 0.99911
100 499554 0.99822 200 999497 0.99899
TABLE 8
Region Limats Ratio Extreme yy(n) Atn
A 1-6671 >1 +1.996* 1230*
B 16287-48781 <1 —1.662 21017
C 49185-151211 >1 +2.882 78823
D 162951-332867 <1 —1.684 241706
E 333373363347 >1 +0.553 347684
F 363769-375013 <1 —0.158 367246
G 376961-395293 >1 +0.204 386259
H 406565-494241 >1 +0.692 434150
I 538051-601509 <1 —0.499 569769
J 637169-645423 >1 +0.154 641119
K 646475-2040000-+ <1 —1.165 812968

* Only n > 1000 examined here.
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Consistent with the definition (13) is the designation y1(n) for the normalized
difference:

odds — evens _ Zil) (n) — 5" (n) _

As in the previous section, our main interest here is not so much in the distribution
of Y1(n) as in its extreme values, and in Table 8 we list the extreme value it takes
on in each interval. For instance, in region B, at n = 21017 there are 10629 evens
and 10388 odds for an extreme value

(14)

¥1(21017) = —1.662.

In regions E through J parity is very much equidistributed. The worst normalized

difference occurs in region C at n = 78823, with 39816 odds and only 39007 evens.

(On Table 7, this n lies between the first two entries, and has a ratio = 1.02074.)
It is reasonable to conjecture that

(15) Y1(n) = O(nf)

for any positive e. If this is true, then we have not merely that the ratio — 1, but
we also know its rate of convergence:

(16) lratio — 1] < an™ Y%

for some a, and any e.

7. Runs. The data in Section 5 was extended only to 8-tuples. To go beyond
would require massive amounts of data, but the following special cases are of some
interest. How often should one expect say, 15, and only 15 consecutive odd partition
numbers? Since this presumes that the partition numbers immediately prior to such
a sequence and immediately subsequent are both even, we are in fact asking for the
count of 17-tuples of type 2(2'®* — 1) = 65534. As above, the expectation to n
= 2-10%is

an

2 (2:10%) = 277(2-10%) = 15.26 .

65534
Actually, there are 16 such runs of exactly 15 successive odds—the first run begin-
ning with p(108417), and the sixteenth beginning with p(1936252).

In Table 9 we indicate the number of runs =15 out to n = 2-10°. There are
no runs here greater than 20. All of this data seems to be as expected.

TABLE 9
k Even Runs Odd Runs Ezxpectation
15 10 16 15.3
16 7 4 7.6
17 5 5 3.8
18 2 4 1.9
19 2 0 1.0
20 1 0 0.5
Total 27 29 30.1
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Curio-collectors may wish to know that the 20 partition numbers

p(n), 1517214 < n < 1517233

are all even, while
p(n), 617995 =< n < 618012

constitutes the first sequence of exactly 18 odd partition numbers.

8. Remarks on the Presumed Normality. The last three sections, taken together,
do make a good empirical case for normality (modulo 2). We are indebted to Dr.
A. O. L. Atkin for a reason why the modulus 2 and also the modulus 3 would be
expected to be special for the partition numbers. All known congruence relations
for these numbers can be deduced from the so-called modular forms. Entering here
in a fundamental way is the linear function

2Um — 1,

and while this can be divisible by any prime greater than 3, 2 and 3 are clearly
special. Therefore, Atkin would also expect normality (modulo 3). We have not
examined this.

Of course, such considerations are merely suggestive, and, so far, have not led
to a proof of normality for either modulus, 2 or 3.

Another aspect of the distinction here between the apparent normality (modulo
2) and the distinet nonnormality (modulo 5), as exemplified in (2) and (5), is that
one is reminded of the numbers of Wolfgang Schmidt. As is known, he showed [15],
[16] that there exist real numbers x normal to one base r without being normal to
another s. Perhaps we should clarify the difference between the phenomena pres-
ently under investigation and Schmidt’s phenomena. Given any sequence of integers,
a(n), we could construct two different real numbers as in our equations (3) and (4),
and they may, as apparently is the case here, be normal to one base while not to
another. On the other hand, a Schmidt number x gives rise to {two de¢fferent integer
sequences:

a(n) = [2r"] and b(n) = [2s7].

Finally, we wish to draw the main inference. Some time ago, Professor Freeman
Dyson wrote one of us, ‘‘Atkin and I were never able to do anything with modulo 2
[for the partition function].” But if the parity is normal, and this is what our
investigation strongly suggests, it appears to be a valid inference that ‘“nothing”
can be done—*‘nothing” surely as simple as the congruence (2), or even as profound
as the congruence (5). There remains the problem of proving the presumed normality,
but no doubt that will be very difficult. Rather more promising is the weaker prob-
lem of showing that every k-tuple occurs, that is:

W)
> (n)>0 (every t, k)
t
for a sufficiently large n. Happily, this implies the (only seemingly stronger) result:
W)

> (n)— » (all ¢, k) .
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9. Iterated Computation of the Parity; An Unsolved Problem. As we indicated
at the end of Section 3, by iterating equations (11) one can determine individual
parities independently of any stored table of a, except for

Ay = 1 s ag = 0.
This leads to an unsolved problem of interest. Let us introduce an abbreviated no-
tation; instead of

) @200 = G50 + Q43 + aa1 + a20 + Q16
we write
200 = 50, 43, 41, 20, 16 .

The algorithm is standardized by use of the three rules:

(a) Replace the largest term on the right by its equivalent in (11).

(b) Whenever two repetitions of an argument appear on the right, cancel them
both (since their sum is even in any case).

(c¢) Repeat until 0 or 2 or 0, 2 is all that remains on the right. Example:

For 200 one has the sequence:

50, 43, 41, 20, 16, 11, 10, 10, 7, 10, 5,5, 4, 2,1,0,1, 1,0 .

Here we have italicized each term replaced by its equivalent, and used boldface for
each pair eliminated by cancelling. Thus p(200) = p(2) = even.
In the computation for 200 we listed 19 terms, and cancelled 4 pairs. We define

t(n) and c(n)
to be these two functions. Thus
£(200) = 19,  ¢(200) = 4.

Let us compute these functions for n = 100, 200, 300, 400, 500, 600. To do the
algorithm efficiently, it is best not to use (11) directly, but, after having decided
whether the current term to be replaced is of the form

n, 4n+1, 4n+ 3, or 4n+46,
respectively, we write down n, and then subtract according to the differences:
7,2, 21, 4, 35, 6, 49, 8, ete.,
5,6, 15, 12, 25, 18, 35, 24, etc.,
3, 10, 9, 20, 15, 30, 21, 40, etc., or
1, 14, 3, 28, 5, 42, 7, 56, ete.

Here is a brief Table 10.

TABLE 10
n t(n) c(n)
100 11 2
200 19 4
300 30 9
400 38 11
500 58 16
600 56 17
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We raise the questions whether
an t(n) = O(n)?
(18) c(n) = 0(n)?

Clearly, i(n) will generally increase with n, but ‘‘luck’ plays a part; for 400 and
600 there is much cancellation of large terms, while for 500 there is relatively little.

The real point of our query is the question whether the parity of an individual
p(n) can be determined in O(n) operations. If one computed such an individual
parity by our previous, en masse, table building, technique the computation would
require

/ 0(v/n)dn = 0*'™

operations. We do not know whether (17) is true.
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