
On the Distribution of Parity 
in the Partition Function 

By Thomas R. Parkin and Daniel Shanks 

1. Introduction. Let p(n) be the number of (unrestricted) partitions of n, and 
define p(O) = 1. Then p(n) is generated by 

X O 1 'K'l- (1) E p(n)xn II = ln + Z (_1)n[xn(3n-1)/2 + Xn(3n+1)/2 J 
n1=O n=1 _ X n=1 

There is little known about p(n) modulo 2; in particular, there are no known criteria 
for the parity of p(n) comparable in simplicity with Ramanujan's famous sufficient 
condition for divisibility by 5: 

(2) 51p(5k+4). 

Kolberg [1] proved, but by contradiction and without identifying the arguments 
n, that i iiitely many p(n) are even, and infinitely many are odd. His proof is 
almost as simple as Euclid's proof that there are infinitely many primes, but like 
that proof it offers only very little more in the way of exact information concern- 
ing questions of distribution. 

From Gupta's tables [2], [3] we find the following cumulative distribution into 
odds and evens for 0 < n < 499. 

n?99 n199 n 299 n < 399 n499 

Odds 58 111 171 222 277 

1,veiis 42 89 129 178 223 

In the absence of any known reason to the contrary, and because of the rather un- 
smooth recursion for p(n) implied by (1), it would be natural to guess that the 
evens and odds are equinumerous, i.e., that the ratio of their counts has the limit 
1 as the upper bound for n -*> oo. But the early preponderance of the odds, as just 
tabulated, would make us hesitate to conjecture that this is true. Nonetheless, it 
seemed to us not unlikely that this early preponderance might wash out as later 
returns came in (from upstate, so to speak). But it does seem unlikely that a theo- 
retical proof of this could be attained with known techniques. 

We have therefore examined the question empirically with a computer, and 
have put an even stronger question. Consider the number m = 1.74264258 
-which when written in binary: 

(3) m = 1.10111110000111011101 . 

has its kth bit to the right of the binary point 0 or 1 according as p(k) is even or 
odd. (m stands for Major MacMahon.) We now ask if m is normal with respect to 
the base 2. If so, this not only implies the previously supposed equinumerosity, but 
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also implies that all possible pairs, 00, 01, 10, and 11, have an asymptotic density 
of 4, etc. 

Here, however, we must note that the corresponding proposition modulo 5 is 
definitely false. Thus, if 

(4) r = 1.12302102021210112002 ... 

is a number written in quinary with its kth place = p(k) modulo 5, we know from 
(2) that r is not normal. In fact, r is not even simply normal since it is further known 
that more than 20% of the p(n) are divisible by 5. For, in addition to (2), Morris 
Newman shows, in the following paper [4], that 

(5) 51p(5. 1941c + 15147) 

also, and still other indepenident linear functions also have this property. (A. 0. L. 
Atkin has obtained more general results; these will appear in [5].) 

One of our reasons for stressing this failure modulo 5 is because of the character 
of our main problem. Suppose, for instance, that our empirical investigation shows 
that parity does appear to be equinumerous, and even normal. Then one might well 
remark: "So what? Isn't that what one expects?" But the failure modulo 5 puts 
the problem in a more interesting light. 

We have determined the parity of p(n) up to n = 2,039,999. In what follows 
we will indicate our method, our results, and some related investigations. 

2. Notation and Nomenclature. Let an be the nth bit of m in (3): 

(6) an-p(n) (mod2). 

Let the finite sequence 

amam+jam+2 ... am+k-1 

be called the mth k-tuple. Thus 1101 is the 0th 4-tuple and 11111 is the 3rd 5-tuple. 
There are 2k possible types of /c-tuple, and let us designate these 2k types by the 
integer, which, when written in binary, is the /c-tuple itself. Thus 1101 is the 13th 
type of 4-tuple and 11111 is the 31st type of 5-tuple. Let 

(k) 

E (n) 

be the number of t type k-tuples that appear to the left of, but not inclzuding, the 
nth k-tuple. (We find it convenient, because of (11) below, to count the 0th k-tuple 
here, and therefore to omit the nth, so that the argument n in E (k) (n) means that 
n k-tuples have been counted.) Thus, from (3), 

(2) (2) (2) (2) 

E(10) = 2, E (10) = 1, E (1 0) = 2 E (I10) = 5 
0 1 2 3 

and referring to our previous table, 

(1) (1) 

E(500) = 223, E(500) = 277. 
0 1 

Then equinumerosity means 
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(1) (1) 1 

(7) E (n) ,(n) - n, 7 1 

while the stronger normality means that 
(k) 

(8) E (n) - 2-'n 

as n oo for all t and all k. 
Note that if one has counted the k-tuples E (k) (n), one can obtain the counts of 

j-tuples with j < k simply by addition. Thus 
(8) (8) (7) 

E (n) + E (n) =E (n), 
0 1 0 

and generally 
(k) (k) (k-1) 

(9) Z(n) + E (n)= E (n) 
2t 2t+1 t 

for all k and all t. 
To test normality we have counted the 256 types of 8-tuples out to n = 2 106, 

and we deduced from these the counts, successively, of 7-tuples, 6-tuples, etc. 

3. Computing the Parity Individually or En Masse. That the first two terms of 
equation (1) are equal is fairly obvious. For the simplest proof of the equality of 
the second and third terms, see [6]. Together, these equations imply Euler's recur- 
rence: For n > 1, 

(10) p(n) = p(n-1) + p(n-2)-p(n-5)-p(n-7) 
+ ? + (-1)"'p(n - ei) 

where ei = 2i(3i 2F 1), and where the series breaks off just before n - es becomes 
negative. One may thus compute the an en masse by recurrence using (10) modulo 
2. For n large about 2 (6n)"'2 terms are needed to compute an if the previous an,e 
are already known. 

But MacMahon [7] found the more efficient recurrences: 

a4n=an+ an-7+ an-9 + *+ an-ag with a =i(8i 2 1) 

(11) a4n+l 
= 

an + an-5 + an-11 + * + ani with f3 = i(8i =F 3) (mod 2). 

a4n+3 an + an-3 + an-13 + + an-i with ay = i(8i T 5) 
a4n+6 an + an- + an-l15 + + an-6 with t3j i(8i =F 7) 

(Note that 4n + 2 = 4(n - 1) + 6, but the formulas are neater as given.) We 
will give a proof of (11) presently. For now, let us note the savings possible. 

(1) The number of terms for an (not a4n) with n large is now --'4 (2n)l "2 so that 
the use of (11) requires only V/ 3/8 = 0.2165 as much arithmetic as the use of (10). 

(2) To compute an out to n = N we now need to save the an only to n = [N/4], 
so that only 0.25 as much storage is necessary. 

Aside from this more efficient computation en masse, there also arises the pos- 
sibility of iterating (11), and thus of coiiputing an individual an with no mass 
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storage whatsoever, since each application of (11) reduces the arguments by a 
factor of 4. We will discuss this possibility briefly later. 

4. MacMahon's Congruences. In [7] MacMahon gave a proof of (11) based upon 
self-conjugate partitions, and in [8] he used (11) to compute the parities out to 
n = 1000. Subsequently, independently, and in effect, but not explicitly, G. N. 
Watson [9] reproved (11) using theta functions. Still later, H. Gupta [10] gave still 
another proof, this time using Ramanujan's tau function. 

Perhaps the most direct proof, since it involves knowledge of none of these 
special concepts or functions, is this: Since 

1 nn?+2n 1 Xt (mod 2) 
1 -x 

we have 

1 _1 

(1X-)( -X2) (1-IX) ... (1X-)(1 + X2)(1 -X)(1 + X4) 

(1- X2) (1- X4) ... (mod2) 

(1X) _-X 4) (1XI) _ -XI) 

Thus 
co co co 2n 

H n--II _ 4 I 1-x1 (mod 2). 
n=l1 - n=l1 -l n=1 -1 

Since the product on the right equals n X"(1l /2 (see [11] for the shortest proof) 
we have 

(12) E p(n)x" E p(n)x'n E x"("+l'/ (mod 2), 
n=O n=O n=O 

and comparing like powers of x, congruences (11) follow quickly. 
It may be of interest to indicate the quite extraneous considerations that led us 

to this problem. One of us was in the process of reviewing [12] The Groups of Order 
2n (n _ 6), by Marshall Hall, Jr. and James K. Senior, Macmillan, New York, 
1964. The abelian groups there are designated as belonging to a family r1, and the 
number of such groups of order 2n is, of course, p(n). It may be noted, see pages 
103-104, that the lattice diagrams of these groups suggest that they fall into dual 
pairs. The question of whether p(n) is even or odd is therefore the question of 
whether there are an even or odd number of lattices which are self-dual. 

This leads one to consider self-conjugate partitions and thus to rediscover (11) 
with (essentially) MacMahon's proof. But the proof above is somewhat simpler. 
Naturally, after having "discovered" the efficient congruences (11), one is eager to 
exploit them. 

5. Normality. We show in Table 1 the value of 2 m = .676 ... in octal to 3200 
places. In this one can read an for 0 ? n < 9599. We have placed in the UMT 
file of this journal the complete 213-page value of 2 m out to n = 2,039,999. In 
Tables 2 and 4 we list the counts of the 8-tuples Z,8) (n) for t = 0(1)255 and 
n = 106 and 2 . 106, respectively. For example, 
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(8) (8) 

E (106) = 3952 and E (2.106) = 7916. 
0 12 

These tables are read first across, and then down, for increasing t. 
From Tables 2 and 4 we compute the counts of k-tuples for k = 7, 6, ***, 1 

at n = 106 and 2 106, respectively. This is done by use of the recursion (9), and 
the results are listed in Tables 3 and 5 in the obvious way. Thus 

(7) (6) (5) 

E (106) = 7900, E (106) = 15848, E (2. 10') = 62655 
0 1 2 

The initial impression of this data is that no type of k-tuple is favored over 
other types, that the various types are equidistributed, and that the data here is 
consistent with the hypothesis of normality. We have attempted no elaborate sta- 
tistical tests of this, but we did examine Good's psi-square serial test [13], [14] to a 
limited extent. Let 

2k_1 /(k) 2 

(13) 4 k2 = 2kn-1 E ( E (n) - 2-kn 
t=O t 

Good showed that if the bits of a binary number are random, then 4'k2 has an 
expectation 2k - 1. We list these 4'k2 for k = 1(1)6 and n = 106, 2. 106 together with 
their expectation in Table 6. 

TABLE 6 

k n = 106 n = 2.*106 Expect. 

1 0.796 0.506 1 
2 1.631 1.192 3 
3 7.737 2.662 7 
4 23.106 9.429 15 
5 44.329 21.770 31 
6 87.733 56.850 63 

Now note: We are testing here for randomness, but we are really interested in 
normality. The former implies the latter, but what of the converse? The data in 
Table 6 is consistent with randomness, and therefore also with normality. At n 
= 2 . 106 (but not at n = 106) the distribution is even "too good." It seems to us 
conceivable (but admittedly, we are now going somewhat beyond our competence) 
that real numbers may exist with the 4'k2 consistently too small. While such be- 
havior would not be random, it could still imply normality-in fact, the smaller 
the 4lk2 are, the better. 

6. Equinumerous Evens and Odds. Turning now to k = 1 in greater detail- 
and the question whether even and odd partition numbers are equinumerous-we 
list in Table 7 the number of odds, Zf1) (n), and the ratio of odds to evens 

' (n)/,(1) (n) for n = 50,000(50,000)2 106. 
Since these steps An = 50,000 are large and therefore do not allow a completely 

accurate picture of the variations in the ratio function, we supplement Table 7 with 
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the description in Table 8. This lists 11 regions, A through K, within each of which 
the ratio remains continually greater than 1, or continually less than 1. Thus, the 
early preponderance of the odds, that we already noted, continues throughout region 
A until n = 6672. Between these regions there are many small oscillations of the 
ratio function around the value 1. For example, between regions G and H, the 
difference: 

odds - evens 

varies between +56 and -65, and the ratio equals 1 for 176 different values of n 
(iineluding, as in Table 7, n = 400,000). 

TABLE 7 

n- 10-4 Odds Ratio n- 10-4 Odds Ratio 

5 25016 1.00128 105 524597 0.99847 
10 50200 1.00803 110 549632 0.99866 
15 75041 1.00109 115 574646 0.99877 
20 99766 0.99533 120 599770 0.99923 
25 124703 0.99526 125 624669 0.99894 
30 149758 0.99678 130 649700 0.99908 
35 175105 1.00120 135 674581 0.99876 
40 200000 1.00000 140 699672 0.99906 
45 225123 1.00109 145 724763 0.99935 
50 250016 1.00012 150 749745 0.99932 
55 274917 0.99940 155 774859 0.99964 
60 299972 0.99981 160 799757 0.99939 
65 324951 0.99970 165 824694 0.99926 
70 349834 0.99905 170 849627 0.99912 
75 374718 0.99850 175 874724 0.99937 
80 399531 0.99766 180 899622 0.99916 
85 424656 0.99838 185 924804 0.99958 
90 449744 0.99886 190 949733 0.99944 
95 474475 0.99779 195 974570 0.99911 

100 499554 0.99822 200 999497 0.99899 

TABLE 8 

Region Limits Ratio Extreme ,/1(n) At n 

A 1-6671 > 1 + 1.996* 1230* 
B 16287-48781 < 1 -1.662 21017 
C 49185-151211 > 1 +2.882 78823 
D 162951-332867 < 1 -1.684 241706 
E 333373-363347 > 1 +0.553 347684 
F 363769-375013 < 1 -0.158 367246 
G 376961-395293 > 1 +0.204 386259 
H 406565-494241 > 1 +0.692 434150 
I 538051-601509 < 1 -0.499 569769 
J 637169-645423 > 1 +0.154 641119 
K 646475-2040000+ <1 -1.165 812968 

* Only n > 1000 examined here. 
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Consistent with the definition (13) is the designation V/l(n) for the normalized 
difference: 

(14) odds - evens - 1) (n) - Z(') (n) -4 (n) 
V\n V\n 

As in the previous section, our main interest here is not so much in the distribution 
of 4Al(n) as in its extreme values, and in Table 8 we list the extreme value it takes 
on in each interval. For instance, in region B, at n = 21017 there are 10629 evens 
and 10388 odds for an extreme value 

4'1(21017) =-1.662 . 

In regions E through J parity is very much equidistributed. The worst normalized 
difference occurs in region C at n = 78823, with 39816 odds and only 39007 evens. 
(On Table 7, this n lies between the first two entries, and has a ratio = 1.02074.) 

It is reasonable to conjecture that 

(15) 41 (n) = O (ne) 

for any positive e. If this is true, then we have not merely that the ratio -> 1, but 
we also know its rate of convergence: 

(16) [ratio -1 < an-1/2+E 

for some a, and any e. 

7. Runs. The data in Section 5 was extended only to 8-tuples. To go beyond 
would require massive amounts of data, but the following special cases are of some 
interest. How often should one expect say, 15, and only 15 consecutive odd partition 
numbers? Since this presumes that the partition numbers immediately prior to such 
a sequence and immediately subsequent are both even, we are in fact asking for the 
count of 17-tuples of type 2(215 - 1) = 65534. As above, the expectation to n 
= 2.106 is 

(17) 

E (2. 10') = 217(2. 10') = 15.26 
65534 

Actually, there are 16 such runs of exactly 15 successive odds-the first run begin- 
ning with p(l08417), and the sixteenth beginning with p(l936252). 

In Table 9 we indicate the number of runs ? 15 out to n = 2 . 106. There are 
no runs here greater than 20. All of this data seems to be as expected. 

TABLE 9 

k 1 Even Runs 
- 

Odd Runs ] Expectation 

15 10 16 15.3 
16 7 4 7.6 
17 5 5 3.8 
18 2 4 1.9 
19 2 0 1.0 
20 1 0 0.5 

Total 27 29 30.1 
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Curio-collectors may wish to know that the 20 partition numbers 

p(n), 1517214 < n < 1517233 

are all even, while 
p(n), 617995 ? n ? 618012 

coinstitutes the first sequence of exactly 18 odd partition numbers. 

8. Remarks on the Presumed Normality. The last three sections, taken together, 
do make a good empirical case for normality (modulo 2). We are indebted to Dr. 
A. 0. L. Atkin for a reason why the modulus 2 and also the modulus 3 would be 
expected to be special for the partition numbers. All known congruence relations 
for these numbers can be deduced from the so-called modular forms. Entering here 
in a fundamental way is the linear function 

24m - 1, 
anid while this can be divisible by any prime greater than 3, 2 and 3 are clearly 
special. Therefore, Atkin would also expect normality (modulo 3). We have not 
examiined this. 

Of course, such considerations are merely suggestive, and, so far, have not led 
to a proof of normality for either modulus, 2 or 3. 

Another aspect of the distinction here between the apparent normality (modulo 
2) and the distinct nonnormality (modulo 5), as exemplified in (2) and (5), is that 
one is reminded of the numbers of Wolfgang Schmidt. As is known, he showed [15], 
[16] that there exist real numbers x normal to one base r without being normal to 
another s. Perhaps we should clarify the difference between the phenomena pres- 
ently under investigation and Schmidt's phenomena. Given any sequence of integers, 
a(n), we could construct two different real numbers as in our equations (3) and (4), 
and they may, as apparently is the case here, be normal to one base while not to 
another. On the other hand, a Schmidt number x gives rise to two different integer 
sequences: 

a(n) = [xr'] and b(n) = [xs'J 

Finally, we wish to draw the main inference. Some time ago, Professor Freeman 
Dyson wrote one of us, "Atkin and I were never able to do anything with modulo 2 
[for the partition function]." But if the parity is normal, and this is what our 
investigation strongly suggests, it appears to be a valid inference that "nothing" 
can be done-"nothing" surely as simple as the congruence (2), or even as profound 
as the congruence (5). There remains the problem of proving the presumed normality, 
but no doubt that will be very difficult. Rather more promising is the weaker prob- 
lem of showing that every k-tuple occurs, that is: 

(k) 

L (n) > 0 (every t, k) 

for a sufficiently large n. Happily, this implies the (only seemingly stronger) result: 

(k) 

L (n) - oo (all t, k). 
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9. Iterated Computation of the Parity; An Unsolved Problem. As we indicated 
at the end of Section 3, by iterating equations (11) one can determine individual 
parities independently of any stored table of an except for 

aO = 1, a2 = 0. 

This leads to an unsolved problem of interest. Let us introduce an abbreviated no- 
tation; instead of 

a2OO -a5o + a43 + a4l + a20 + a16 

we write 
200 = 50, 43, 41, 20, 16. 

The algorithm is standardized by use of the three rules: 
(a) Replace the largest term on the right by its equivalent in (11). 
(b) Whenever two repetitions of an argument appear on the right, cancel them 

both (since their sum is even in any case). 
(c) Repeat until 0 or 2 or 0, 2 is all that remains on the right. Example: 
For 200 one has the sequence: 

50, 43, 41, 20, 16, 11, 10, 10, 7, 10, 5, 5, 4, 2,1, 0, 1, 1, 0. 

Here we have italicized each term replaced by its equivalent, and used boldface for 
each pair eliminated by cancelling. Thus p(200) _ p(2) = even. 

In the computation for 200 we listed 19 terms, and cancelled 4 pairs. We define 

t(n) and c(n) 

to be these two functions. Thus 

t(200) = 19, c(200) = 4. 

Let us compute these functions for n = 100, 200, 300, 400, 500, 600. To do the 
algorithm efficiently, it is best not to use (11) directly, but, after having decided 
whether the current term to be replaced is of the form 

4n, 4n + 1, 4n + 3, or 4n + 6, 

respectively, we write down n, and then subtract according to the differences: 

7, 2, 21, 4, 35, 6, 49, 8, etc., 
5, 6, 15, 12, 25, 18, 35, 24, etc., 
3, 10, 9, 20, 15, 30, 21, 40, etc., or 
1, 14, 3, 28, 5, 42, 7, 56, etc. 

Here is a brief Table 10. 

TABLE 10 

n t(n) c(n) 

100 11 2 
200 19 4 
300 30 9 
400 38 11 
500 58 16 
600 56 17 
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We raise the questions whether 

(17) t(n) = O(n)? 

(18) c(n) = 0(n)? 

Clearly, t(n) will generally increase with n, but "luck" plays a part; for 400 and 
600 there is much cancellation of large terms, while for 500 there is relatively little. 

The real point of our query is the question whether the parity of an individual 
p(n) can be determined in O(n) operations. If one computed such an individual 
parity by our previous, en masse, table building, technique the computation would 
require 

0(V/n)dn = O(n/2 

operations. We do not know whether (17) is true. 
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