
Consecutive P-rimes in Arithmetic Progression 

By L. J. Lander and T. R. Parkin 

A. Schinzel and W. Sierpifnski [1] conjectured that there exist arbitrary long 
arithmetic progressions formed of consecutive prime numbers. Sierpi'ski stated in 
[2] that a progression of five consecutive primes had not yet been found. A direct 
computer search showed that the first such progression has the common difference 
d = 30 and begins with the prime 9,843,019. The first progression of six consecu- 
tive primes begins with 121,174,811 and also has d = 30. Up to the limit 3 X 108 
there are 25 other progressions of five consecutive primes, all with d = 30; there 
are no other progressions of six consecutive primes. 

The referee points out that recently a much larger quintuplet, beginning with 
10000024493, and again having d = 30, was recorded [3], but without reference to 
Sierpifnski's remark. The smaller set that we found, and the single sextuplet, may 
still be worth recording. 
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Convergence of Successive Substitution 
Starting Procedures 

By A. C. R. Newbery 

The method of successive substitutions (also known as Picard's method) has 
been proposed [1], [2] as a means of initialising the numerical solution of the differ- 
ential equation x' = f(x, t). The method is capable of advancing the solution k 
steps at an average cost of k function-evaluations per step with a truncation error 
of order O(hk+2). This makes it potentially onie of the most efficient methods avail- 
able for the purpose, and so it seems appropriate to study its numerical con- 
vergence properties. The method is based on k formulas of the form xr = xo + 
hLr(X, x', *o*, Xk%) r = 1, 2, *, k where, Lr denotes a linear combination with 
known constant coefficients. The required coefficients are implicit in the corrector 
matrices published in [3]. For a given k, the coefficients in Lr are the entries in the 
rth column of the kth corrector matrix. For example with k = 2 we would obtain 
the formulas: 

xi = xo + (h/24) (10xo' + 16xi' - 2x2') , X2 = XO + (h/24)(8xo' + 32xi' + 8x2') 
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We may use the modified Euler method (Euler with a single uniterated trape- 
zoidal correction) to obtain first approximations to the xi, i =1 * *, k. These ap- 
proximations are subject to truncation error 0(h3) and they cost one derivative 
evaluation per step. Thereafter, each application of the successive substitution 
formulas augments the order of the truncation error by one, and it costs one further 
evaluation per step; consequently, k - 1 applications will yield a truncation error 
of O(hk+2) even though the iterations may not have closed. If subsequent iterations 
are performed, the order of truncation error will not be augmented beyond 
O(hk+2). 

For the study of convergence we define x?(P) to be the pth iterate on xr. We 
may conveniently take xr(?) to be that value which is defined by the Euler or 
modifieu Euler process. Thereafter, the iterative cycle will be defined by 

k 

(1 ) Xr(P+1) = Xo + h3jf(xoy to) + h E brJf(xj(), tj), r = 1, * *,k. 

In this equation 13r is the rth element in the first row of the kth corrector matrix 
in [3]; br1 is the (r, j)th element of a matrix Bk obtained from the corrector matrix 
by deletion of the first and last rows and transposition of the remaining k-square 
matrix. The superscript p in (1) may be defined in various ways, but only two will 
be considered here: 
(A) p = p, or 
(B) if j > r thenp = p; elsep = p + 1 . 

These two alternative definitions of p give rise to iterations analogous to Gauss- 
Jacobi aiid Gauss-Seidel respectively, and we now study their convergence prop- 
erties. 

We assume that the partial derivative fx(xi, ti) is locally constant; we write 
hfx = q anid X r(P+l) - Xr(p) - . If we then write Eq. (1) for two consecutive 
p-values and subtract, we obtain 

k h 

(2) -1(p) = h E brj(f(xj(P), tj) - f(xj(-1), tj)) - q Ebrjj( . 
3=1 j=l 

Let d(P) be a k-dimensional column vector whose rth component is 8r(P); then if 
the alternative (A) is chosen, (2) reduces to d(P) = qBkd(P-1). The process will there- 
fore converge, provided that IhfxI is smaller than the reciprocal of the spectral radius 
of Bk. The critical value is indicated in the table below. If the alternative (B) is 
chosen, then d(P) = q(I - qL)-'(U + D)d(P'), where Bk = L + D + U. The 
spectral radius of the matrix G(q) = q(I - qL)-'(U + D) is a function of q. By 
means of a systematic search procedure one may approximate the critical values, 
i.e., the smallest positive and largest negative values of q such that the spectral radius 
of G(q) is equal to one. These critical values have been computed numerically and 
are tabulated below to three significant figures. Since one ordinarily operates well 
within the radius of convergence, we have also tabulated the range of q-values such 
that the convergence factor (i.e., the spectral radius of G(q)) does not exceed .1. 
This has been done only for method (B); to obtain the corresponding figure for 
method (A) one would simply divide the first-column entry by 10. It will be noted 
that the Jacobi-like method (A) has generally superior convergence properties to 
the Seidel-like method (B), and that the superiority becomes more marked with 
increasing k. In the case k = 2 the problem is (just) simple enough to work by 
hand. The exact values for the first-row tabular entries are 
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V3, (3/2)(-3 + V/5), 3)N/2/2, (3/190)(-15 + (35),1/2) (15 - (15) 1/2)/70 . 

The over-all evidence suggests very strongly that in most practical situations 
method (A) is preferable to method (B). 

TABLE 

Method (A). Mlethod (B). Method (B). 
Iq[-bound for q-range for q-range such that 

k convergence convergence convergence factor < * 1 

2 1.73 (-1.15 ,2.12) (- .143 , .159) 
3 1.43 (- .860 1.43) (- .119 , .135) 
4 1.33 (- .738 1.64) (- .106 , .117) 
5 1.21 (- .711 1.21) (- .0994, .102) 
6 1.16 (- .687 1.50) (- .0926, .0866) 
7 1.10 (- .576, .813) (- .0769, .0686) 
8 1.07 (- .493 , .475) (- .0629, .0517) 
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A Polynomial Approximation Converging 
in a Lens-Shaped Region' 

By Jay A. Leavitt 

The Taylor series expansion of y = 1/(1 + x2) about x = 0 has a radius of con- 
vergence R = 1, while the function itself is analytic for all real values of x. In 
order to represent 1/(1 + x2) by a Taylor series for values of x outside the interval 
(-1, 1), it is necessary to expand about a point of nonsymmetry. 

In practice, given an analytic function f(x), one uses only its truncated Taylor 
series Tn(x). The expansion of such a truncated series of order n, i.e. Tn(x), about 
the point b provides a polynomial, say V.(z) where z = x - b, which is of order n. 
But V.(z) converges to f(x) only in the original circle of convergence of the Tn(x). 
Nevertheless, this property is used to produce a sequence of even polynomials, 
Un(x), which have real coefficients and which converge to y = 1/(1 + x2) in a 
lens-shaped region that includes an extended interval of the real axis. 

Let us expand 1/(x + i) about x = (X - 1)i and 1/(x - i) about x =-(X - 1)i 
and truncate; X > 1 real. 
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