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V3, (3/2)(-3 + V/5), 3)N/2/2, (3/190)(-15 + (35),1/2) (15 - (15) 1/2)/70 . 

The over-all evidence suggests very strongly that in most practical situations 
method (A) is preferable to method (B). 

TABLE 

Method (A). Mlethod (B). Method (B). 
Iq[-bound for q-range for q-range such that 

k convergence convergence convergence factor < * 1 

2 1.73 (-1.15 ,2.12) (- .143 , .159) 
3 1.43 (- .860 1.43) (- .119 , .135) 
4 1.33 (- .738 1.64) (- .106 , .117) 
5 1.21 (- .711 1.21) (- .0994, .102) 
6 1.16 (- .687 1.50) (- .0926, .0866) 
7 1.10 (- .576, .813) (- .0769, .0686) 
8 1.07 (- .493 , .475) (- .0629, .0517) 
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A Polynomial Approximation Converging 
in a Lens-Shaped Region' 

By Jay A. Leavitt 

The Taylor series expansion of y = 1/(1 + x2) about x = 0 has a radius of con- 
vergence R = 1, while the function itself is analytic for all real values of x. In 
order to represent 1/(1 + x2) by a Taylor series for values of x outside the interval 
(-1, 1), it is necessary to expand about a point of nonsymmetry. 

In practice, given an analytic function f(x), one uses only its truncated Taylor 
series Tn(x). The expansion of such a truncated series of order n, i.e. Tn(x), about 
the point b provides a polynomial, say V.(z) where z = x - b, which is of order n. 
But V.(z) converges to f(x) only in the original circle of convergence of the Tn(x). 
Nevertheless, this property is used to produce a sequence of even polynomials, 
Un(x), which have real coefficients and which converge to y = 1/(1 + x2) in a 
lens-shaped region that includes an extended interval of the real axis. 

Let us expand 1/(x + i) about x = (X - 1)i and 1/(x - i) about x =-(X - 1)i 
and truncate; X > 1 real. 
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(1) + i 1; [1 - (s/Xi) + (s/Xi) - + + (-n)n(s/Xj)n] - 1 

-i ~Ji [1 + (t/)i) + (t/)i)2 + * + (t/Xi)n] h Qn(t), 

where s = x- ( 1-1)i and t = x + (X - 1)i. 
Pn(s) and Qn(t) approximate series that converge in the circles of radius I XI with 

centers s = 0, t = 0 respectively. The intersection of these circles is a lens lying 
between - 

V (2X -1) and + -V (2X - 1) on the real axis and between ii on the 
imaginary axis. 

If we translate Pn(s) and Qn(t) to the origin, the expansion 

2[Pn (S) - Qn (t)] = [Pn(x - (X - 1)i) - Qn(x + (X - 1)i)] - Un(X) 

is a polynomial approximation for 1/(1 + x2) in this lens. Furthermore, this poly- 
nomial is real and symmetric in x because the coefficients of xk vanish for k odd, 
and are real for k even, 

Un(x) 
1 

E [(x + (X - )) + (-1) 
x 

o n ki ) (X )}(X _ 1)j-k[l + (-1)k] 

This approximation can also be obtained by using a theorem by Appell.2 
By summing the geometric series (1), we find that the error, Rn+1, is given by: 

_ 1 1 
R =+ + -2[Pn(S) - Qn(t)] 

2 -[ xi )- (1 t (X/i+ :1 

This can be re-expressed as 

[X + X- 1)i)n+1 (x n+(X 
R = z pt bxi _ 1 ')n+ ;)+l 

Rfl+1 2- L i x +(-) + x ] 

which reduces to 

R+ [( x )('+ (2( .1\21(n+1)/2 Ecos [(n + 1)0] - x sin [(n + 1)0]1 

where 0 = arg ((X - 1)/X + xi/X). 
Below is a comparison between the standard Taylor approximation and the 

method of this paper. The degree is 27 and X = 2. The odd coefficients are zero 
and the even are given by: 

2 J. L. WALSH, Interpolation and Approximation by Rational Functions in the Complex Domain, 
Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R. I., 1965, p. 19. 
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.9999999963 
- .9999984838 

.9999100044 
-.9981404170 

.9821509309 
-.9075333290 

.7142059058 
-.4252770096 

.1724642254 
-.4357927665 X 10-1 

.6270475686 X 10-2 
-.4561170936 X 10-3 

.1372024417 X 10-4 
-.1080334187 X 10-6 

1 1 T7X 
x 1 + x2 1 + x2T27(X) R28 

0.0 1.0000000000 0.0 .37 X 10-8 
.1 .9900990099 .99 X 10-28 -.41 X 10-8 
.2 .9615384615 .16 X 10-18 .53 X 10-8 
.3 .9174311927 .21 X 10-14 -.67 X 10-8 
.4 .8620689655 .62 X 10-1" .11 X 10-8 
.5 .8000000000 .30 X 10-8 .48 X 10-7 

.6 .7352941176 .45 X 10-6 -.24 X 10-6 

.7 .6711409369 .31 X 10-4 .34 X 10-6 

.8 .6097560975 .12 X 10-2 .22 X 10-5 

.9 .5524861878 .29 X 10-1 - .83 X 10-s 
1.0 .5000000000 .5 -.31 X 10-4 
1.1 .4524886878 .93 X 10-4 

1.2 .4098360656 .61 X 10-3 
1.3 .3717472119 .39 X 10-3 

1.4 .3378378378 - - .65 X 10-2 
1.5 .3076923077 - - .30 X 10-1 
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