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i erfc z and i2 erfc z correct to 6 significant figures (7 s.f. for z > 1) using single pre- 
cision on a computer with word length of 8 decimal places, for all z for which e-z can 
be calculated correctly. To obtain greater accuracy, it is necessary either to use 
double precision or to use more than two different expansions for each function. 
From Gautschi's formula [2] for the number of terms required for calculation by 
backward recurrence, we see that that method will be better (for 7 s.f. accuracy) if 
all the z's of interest are greater than about 2.5. The advantage accruing from the 
use of Chebyshev approximations would be still greater for multiple-precision cal- 
culations of very high accuracy. 
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An Integral Representation for 
the Modified Bessel Function of the Third Kind, 

Computable for Large, Imaginary Order 

By James D. Lear and James E. Sturm 

The one-dimensional Schroedinger equation describing the quantum-mechanical 
motion of a particle of total energy E and mass ,u in a potential field of the form: 

V = B exp (-r/a) for r > O 

V = oo forr < O 

has, as time-independent solutions, the functions 

( sinh lr)1/2K() 

where v = 2a(2/.tE/h2)"12, z = 2aBe-rI2a, Kiy(z) is the modified Bessel function of the 
third kind, and the normalization is to unit amplitude of the asymptotic (r increas- 
ing) solution [1]. In attempting to compute values for Kiy(z) through use of the 
representation: 
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(1) K%v(z) = f exp [-z cosh 4] cos v4dp 

evaluated by Simpson's rule on a digital computer, we found that computational 
precision was quickly lost for v > 15 and vlz around or exceeding unity. The reason 
for this is evident when one considers the fact that, while Ki,(z) has a maximum 
amplitude of the order (7r/v sinh irv)' I2, the maximum amplitude of the integrand in 
(1) is independent of v. Hence, as v increases, the accuracy requirement for the in- 
tegration increases and eventually exceeds that afforded by the word sizes of most 
electronic computing machines. Below is given a simple generalization of (1) by 
which the excessive accuracy requirement can be replaced by an increase in the 
time required for the numerical integration. 

We note that Ki,(z) is a real function related to the Hankel function of the first 
kind via: 

(2) Ki,(z) = 2exp [iri(1 + iv)/2]H'lY(iz) . 

Beginning with the integral representation for the Hankel function: 

(3) H?(iz) = f exp [-z cos 4-v(q5-ir/2)]d4 
X) path 

where the path in the complex 4 plane extends from ioo to -ioo within the strip 
IRe oj < r/2, we let w = u + iv = -if, reverse the w plane path, and multiply 
the resulting expression by - (r/2) exp [iri(1 + iv)/2] to obtain, considering (2): 

1 /+ ia 
(4) Ki,(z) = - exp [-z cosh w-ivw]dw, lal, Ibl < r/2. 2 _0+ ib 

With w = u + iv, (4) can be expressed as: 

I r+ia v (5) Ki,(z) = - f e^ exp [-z cosh u cos v] cos (z sinh u sin v + vu) dw 
2-+ ib 

where we have used the fact that Ki,(z) is real to eliminate the imaginary part of 
(4). If we now let v be constant along the integration path, we obtain: 

ch (6) Ki (z) J erv e-zcoshu cos (z sinh u sin v + vu) du 

which, for v = 0, reduces to the standard definition. 
The advantage of (6) comes in the dependence of the integrand amplitude oin v. 

By adjusting v to be a negative constant (greater than -r/2), the large fluctua- 
tions of the integrand can be suppressed to tolerable magnitudes. The slower con- 
vergence of (6), while not as serious a problem as the former requirement of huge 
word sizes, will limit the applicability of the representation to a range of v within 
which error accumulation in the integration can be held within tolerable limits. 

The table given below shows how the accuracy of an evaluation depends on 
the choice of v for constant (I 1%) values of cos v cosh B. B is the upper limit 
on u in the integration and D is the size of the Simpson's rule increment in u, both 
parameters being chosen to give a 6-significant-figure accuracy limit for v approach- 
iiig - r/2. 
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Evaluation of Ki5o (20) 

Value X 1031 v B D 

- .723828 -1.00 3.65 .0025 
.269938 -1.20 4.00 " 
.274077 -1.40 4.80 " 
.274078 -1.48 5.45 " 

-1.50 5.60 .005 
-1.52 6.00 " 
-1.54 6.50 " 
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Mixed Algebraic-Exponential Interpolation 
Using Finite Differences 

By J. W. Layman 

The use of finite differences in exponential polyniomial interpolation was intro- 
duced in [1], where an algorithm was developed which triangularizes the system of 
equations that determines the coefficients in the interpolating exponential poly- 
nomial. In the present note we show that a similar finite-difference algorithm also 
exists for interpolation by a mixed algebraic-exponential polynomial of the form 

N mn 

( 1 ) P (x) = E E anx nn 
n-1 m=O 

for x = 0, 1, 2, **, E (Mn + 1)- 1. The symbol x(m) represents the factorial 
power function x(x - 1) * * (x - m + 1). 

We require the basic difference operations E and A and, in addition, the diagonal 
difference S defined by Sf(x) = Axf(O). The diagonal difference is more precisely 
defined in [11 and certain difficulties in interpretation are resolved there. These arise 
when taking higher-order diagonal differences by iteration, Snf(x) = SSn-lf(x). 

The following properties and formulas involving the diagonal-difference opera- 
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