
On Numerical Contour Integration 
Round a Closed Contour* 

By J. N. Lynesst and L. M. Delvest 

1. Introduction. In a companion paper [2] referred to here as Paper A, we give 
an algorithm for locating all the roots of an analytic function f(z) within a region R 
in the complex plane. This algorithm involves the numerical integration of certain 
functions round a simple closed contour C which may be a circle or a square. In 
some forms of the algorithm, it is also necessary to interpolate along the contour. 
In this paper we discuss the accuracy of the integration and interpolation proce- 
dures used, and obtain bounds on the truncation error in the various cases that 
arise. The theory given here is quite general, and the presentation is independent 
of Paper A. However, particular attention is given to the special cases needed there. 

In a previous paper (Lyness and Moler [3]) the numerical calculation of deriva- 
tives of an analytic function was investigated. Briefly, if f(z) is an analytic function 
whose power series 

(1.1) f (z) =E ajz 
j=o 

has radius of convergence R greater than R, the Taylor coefficient aj is given by 

(1.2) a3 = f( z) dz 

the oigin If w dente b C 
,ri 
the 

+ 
C being a simple closed contour lying wholly within the region JI = R and contain- 
ing the origin. If we denote by C, the contour lzi = r, the approximation to aj 
based on using an N-point trapezoidal rule for the contour integral is dj&(N) given by 

N 

(1.3) rij(N) 1 N exp (-27rigj/N)f(r exp (27rig/N)), j = O, 1, ..., N -1, 

a(N) =0, j = N,N+ 1,.. 

A bound on the discretization error in terms of the lower bound R to R has 
been obtained previously (Lyness [4]). There the discretization error 

(N) i -~~j (N) 
(1.4) (N)i (r) = r1aj - r aj 

was bounded using Schwarz's inequality. 
In terms of (J(R))2 = I(R); 
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(1.5) I((R) =2JAfIf(z)I2 If f(R exp (27rit)) dt 

where R > r, and denoting 

(-.6) p = riR, 

it was shown that 

(1.7) IgEN? (r)12 < I (R)p2N+2j/(l _ p2N) , j = o01, *,N - 1 
and also 

(1.8) Irjaj1 2 < I (R)p2j . 

In this paper we obtain results of a similar nature corresponding to interpolation 
and quadrature of analytic functions, for the contours C considered in Paper A: 
that is, for circles and for squares. The results for circles follow naturally from the 
results outlined above, and are obtained in the next two sections. The case of a 
square contour is considered in Section 6. 

2. Interpolation for f(z). We suppose that, based on N function evaluations of f(z) 
at z = r exp (27rij/N), j = 1, 2, * * *, N, we have evaluated approximations &j (N) to 

ai, j = 0, 1, *, N - 1. The value of f(z) at other values of z may be approximated 
using a power series in z. Thus 

N-1 

(2.1) f(z) f(z) = j z 
j=o 

The error in this approximation is 

N-1 co 

(2.2) f(z) -(z) = E (a - aj(N))zi + E a,z3. 
j=0 j=N 

We set a- = JzJ/r and consider values of z satisfying /zl/R = p- < 1. We find 

N-1 X 

(2.3) If(z) -f (z)J ?< E fr'aj -r rij(N) (ui +E X r3a jlu'. 
j=0 i=N 

The inequalities in Eqs. (1.7) and (1.8) may be substituted here to give 

rN-1 N j oo 

(2.4) If(z) (z)[ _ J(R){ (1 - PN 1/2 + j-N } 

1__ {(1 p2N)1/2 + N} J(f)v 

In particular, if z lies on or within the circle IzI = r 

(2.5) If(z) -(Z)I - p [(1 + N)1/2 + ] _J(ft p 

The algorithms in Paper A involve interpolation to obtain not f(z) but rather f'(z) 
or, more generally, the 'yth order derivative f(z)(z) where z is on the circle zI = r. 

The approximation to f(z) (z) is 
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N-1 

(2.6) f(.0(Z) 
E 

aj(Nf)j(j 
_ 1) ... (j- y + l)zjy 

j=0 

An argument similar to that given above leads to 

IV0f N N-1 

ir f(7 (z) - rzf (z)J ? J(R)pz ' _ 2N/2 Ej(j - 1) ... (a - + l)p 

+ Ej(j - 1) ... (j - 'y + l)pj-./ 
j=N 

where we have assumed lzl = r. Since 

co 

(2.8) Ej(j - 1)... (j -y + 1)p =(1_ 
I= 0 (1 -) 

we find 

I r f (z) -r yf ('(z)l I- J (R) t( 
-2N)1/ 2( _ 7+1 + 01 (1-2N)1/2] 

X , j(j - 1) ***(j - y + l)pj, 
j=N 

This may be expressed in a form corresponding to (2.5). For example, with y = 1 

1rf '(z) - rf'(z)J ? J (R) {N( P +N -Np +p) 
(2.10) (1-) 

2 p (1 - 2N)1/2 +(N) +P 

2N -N +Np - 1 
\ 1_p2N) 1/2 

In general, the asymptotic result is 

(2.11) rzf (.(z) - rf(8) (z)I < EN(z) 

where 

(2.12) EN(z) const NYpN as N -X . 

3. Integration Around a Circle. In this section we are concerned with the evalu- 
ation of the contour integral 

(3.1) 2 f f(z)dz = f r exp (2irit)f(r exp (2irit))dt = I+(t). 

In this equation, I+(t) denotes the integral on the real axis of a periodic function 
of t over a complete period. In this section we derive an explicit bound on the dif- 
ference between 1(t) and the N-point trapezoidal rule approximation to it, namely, 

1 N 

(3.2) R[N ik(t) = - 
E r exp (2irij/N)f(r exp (27rij/N)) 

and investigate the asymptotic behavior of this difference. We consider several 
cases of interest. 
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1. f(z) analytic within Iz = R. Here Io(t) = 0. If we expand f(z) in a power 
series we find 

N 

(3.3) R [N ll+ (t) - N-E akrk E r exp (2irij(k + 1 )/N). 
k=O j=1 

However 
N 

E exp (2irijy/N) = N, N = integer 
(3.4) N N 

E exp (2irijy/N) = 0, otherwise. 
j=1 

Thus 

(3.5) R[N' ](t) = r(aNjlrN + a2N4r + .). 

Using inequality (1.8), 

JR [N, 
0(t) |I< r(fr N-'aN1I + r 2Na2N-1I + ) 

(3.6) J(RpN + 2N-1 rJ(R)pN1 

1p 

Since I(t) = 0, we conclude that if f(z) is analytic within lzl = R, then 

(3.7) IR[N1lU (t) - Io(t) I < rJ(R)p 
1-p 

2. f(z) = (z - Z1f)-, jZ1J < r. Here we set 

(3.8) ~ ()= r e;xp (2irit) _ 1 
r exp (2irit) - Z1 1 - (Z1/r) exp (-2irit) 

It follows from Cauchy's theorem that, since Cr contains a simple pole of f(z) of 
residue 1, 

(3.9) 2J-.f(z)dz=f (t)dt = 1 . 

However, 

(3.10) R[N (t) = 
N R=1 - (Zl/r) exp (-2irij/N) 

Expanding each term as a power series in (Zl/r) exp (-27rij/N) and using (3.4), 
we find 

(3.11) R[N,l1p(t) = 1 + (Zl/r)N + (Zi/r) + * * 

Thus 

(3.12) R [N1 (t) - IOp(t) = (Zi/r)N(1 - (Zi/r)N)l. 

3. f(z) = (z - Z1) -1, r < IZ1J < R. Here again 
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(3.13) 4 (t) =r e;xp (2irit) = - r ep(2-rit) 1- 1ex(2r) r exp (27rit) - _ Z I (r/Zl) exp (2)rit) 

but since the pole is outside Cr 

(3.14) 2r f(z)dz = Io(t) =o. 

By a similar argument to case 2 

R[N -t-= i j - exp (2irij/N)(1 - exp (2irij/N)) 
(3.15) N j=i Z(1 1 

- rN - rN- 

Thus 

(3.16) R [N+l(t) - Io+(t) = -(r/Zl) N(1 - (r/Zl )N<-l 

4. f(z) - 4I(z)zy/4'(z) where Py is an integer ? 0 and 4t'(z) is analytic within zJ = R. 
This is the case needed in Paper A. Suppose that 4I'(z) has zeros within lzl = r at 
Z = Z1, Z2, *.* *, Z and has zeros within r < lzl < R at z = Z,+1, Z,+2, * *, Zd 
(multiple zeros being counted according to their multiplicity). The partial fraction 
expansion of f(z) is 

p z l d zil 

(3.17) f(z) =E Z. =++ - z+f( Z) 

where f(z) is analytic within izi = r. Since R [N,1 -I is a linear functional, and f(z) 
is the sum of cases considered previously, we may combine the results in these cases 
to find 

| r exp (2irij/N)f (r exp (2irij/N))- f (z)-dz 

(3.18) < E z j(i - (Zi)N) + ? z )i - (rj}i 

+rJ (R)pN 
p(l _ pN) 

where J(R) is given by (1.5) above but with f(z) replacing f(z). This equation 
gives an upper bound on the asymptotic behavior of the discretization error for 
large N. We may express this 

(3.19) JR [N,11k(t) -I+p(t)f < G (N) -constANas N- o 

where IA I < 1 and is given by 

(3.20) I = max (A1, A2, A3) 

where 

(3.21) A, = max IZ/lr , |Zil < r, A2 = max r/Zil, |Zil > r, 
A3 = r/R. 
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Eq. (3.19) indicates that the error may be considered to be linear in the number 
of function evaluations; that is, asymptotically each additional function evaluation 
reduces the error by the constant factor A. 

4. Romberg Integration Adapted to Particular Expansions. In Section 6 we deal 
with the application of Romberg integration to contour integration round a square 
contour. This application requires a particular modification of the standard tech- 
nique. In this section and in Section 5 we derive results of a theoretical nature 
which relate to integration along lines. These are required in Section 6. 

The standard treatment of Romberg integration is given in Bauer, Rutishauser 
and Stiefel [1]. We refer to this paper as B.R.S. We employ in this section the nota- 
tion 

RN lJf 1Ef() f {f(0) + f + f( ) 

+... + f( N -) + 2 f (l)} 

the primes on the summation indicating that the first and last terms are assigned 
a weighting factor 2. The treatment may be based on the Euler-Maclaurin ex- 
pansion 

R __ -I C2 C4 
fl( _f1O) 

R [ml]f If = -2 (f'(1) - f'(0)) + 
-4 (f"'(4 ) - 

m m 

(4.1) + *. + 2p-.2 (f(2p3)(1) -f(23)(0)) 
m 

-2(- 1)P f 
_2p__X__os 

____m 

+ Jt X) E 2p dx + (2rm)2 o r=1 r 

where 

(4.1a) =_ 1)8-12r(2s)/(2ir)28 = (-1)8-lIB2sI/(2s)! 

In the normal Romberg treatment (B.R.S.), RI[rnllf is evaluated for mesh ratios 
m = 1, 2, 4, 8, ... and the leading terms in the T-table are 

(4.2) To(k) = R fmk,l] mk = 2k k = 0,1, 
The conventional T-table is constructed using the recurrence relation 

(k) k+ ) +T(k+1) T(k) 
(4.3) T8k) = T(k+'1 + - 8_1 

48-1 

Tg(k) is a linear combination To(k), To(k+1), ... , To(k+4) and is precisely that com- 
bination which eliminates the coefficients of m2, im42 ...I m28 in expansion (4.1) 
above. B.R.S. shows that 

(4.4) T8(k) - If = 4-(8+1)k f b2 +2(2kx)f (28+2) (X)dX 

where b28+2(x) is positive definite and 
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(45) !~~~~1 B2,8+21 (45) A b2,+2(X)dx (2s + 2)128(8+1) 

In the conventional notation 

(4.6) h= 1/m 

is referred to as the step size or as the discretization parameter. The standard the- 
ory, described above, refers to the usual case in which the discretization error has 
what is known as an h2 expansion, that is, of the form 

(4.7) E(h) C2h2 + C4+ C6h6 + 

where 

C2n7O, n= 1,2, 

In the case of contour integration round a square (see Section 6) the final re- 
sult is independent of the values of C4, C8, * and the calculation of E(h) for a 
given side can therefore be carried out as if 

(4.8) E(h) '-' c2h2 + c6h6 + clohl' + 

Other types of discretization errors occur which involve some but not all even 
powers of h. For example, in contour integration round triangles or hexagons, the 
effective discretization error is 

(4.9) E(h) - c2h2 + c4h4 + c8h8 + c1oh'0 + ci4h14 + 

while in two-dimensional quadrature over a square of a harmonic function 

(4.10) E(h) c4h4 + c8h8 + c12h'2 + * 

In this section we do not restrict ourselves specifically to (4.8), since the princiDal 
result is independent of precisely which terms are included and which are omitted. 

We may construct an adaption of the T-table to suit the case under considera- 
tion. If a particular term (C28/m28) (f(28l-)(1) - f(28-1)(0)) is not to be eliminated, 
we set 

(4.11) T (k) = T(A)1 

Otherwise we use the standard relation (4.3). Thus at any stage, the relation which 
gives T8(k) in terms of elements of the previous column is either 

(4.12) Ts(k) = T2k), (noneliminating step) 

or 

T(k+l) -mT(k) 
(4.13) T (k) = T(k+-) + 8-1 8-1 (eliminating step) . 

The structure of the T-table differs from the normal structure. For example, in the 
case in which the terms in m4 i8, and M12 are not to be eliminated, the table has 
the appearance 
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T(0) 
T1 = T2(?) > T3(?)= T4(o) 

T ()()(1) 
TO(1) > T1(') = T2(1) T3 = T4(1) T5(?) - T6(?) 

,"(2) 
To0 \ (2) m2 (2) 

T0T, 1 = T2 

Tos (3) 

FIGURE 1 

We now establish the following 

THEOREM. 

1 

TM(k)-If =(2m+2) 

(4.14) 0 
m. 

+ EAM ,j(f(2 )l f(2j_1)(0)) 
j=1 

where +(x) is of definite sign, and A(k) are certain numbers defined below. 
It is convenient to define two classes of functions, E (even) and 0 (odd). 
Definition. A function +(x) is of class E if 
(i) ?(x) is of definite sign 0 < x < 1, 
(ii) +'(x) is of definite sign 0 < x < 2, 
(iii) b0(0) = q$(l) 0 0, 

(iv) OW = o(l x), 

(v) +b(x) = + (x + 1). 
For example ?(x) = Isin irxf is of class E. 

Definition. A function +(x) is of class 0 if 
(i) +(x) is of definite sign, 0 < x < -2 
(ii) (0) = (1) = (), 
(iii) c (x) =-(1 -x), 

(iv) +(x) = (x + 1). 
For example 44x) = sin 21rx is of class 0. 

We state without proof three simple lemmas connecting functions of these 
classes. 

LEMMA 1. If c,(x) is of class 0, then 

A1 = jx (x)dx 

is of class E. 
LEMMA 2. If +(x) is of class E 

(x= f ()(2x) -, (x))dx 

is of class 0. 
LEMMA 3. If +(x) is of class E 

{x= J k(x)dx - x J (x)dx 

is of class 0. 
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It is shown in B.R.S. that 

(4.15) To(k) - If = 4-k f b2(2kx)f," (X)dx 

where 

b2(x) = ' X(l X) 0 < X < 1 

b2(1 + x) = b2(x) , all x . 
It is clear that b2(x) is a function of class E. 

We establish the theorem by induction. The theorem is clearly true for s = 1. 
We assume that it is true for s = m- 1, m-2, *2 * *. 1. Thus 

T(k1 - If = 4-mk f b2m (2kX) f (2m) (X)dX 

(4.17) mr1 

+ kA)l j(f(2j 1)(1) _ f(2j l)(0)) 
+ Ei Am%(- '-~1 

j=1 

where b2m(X) is of class E. 
There are two cases to consider. These are (i) if the step from T(k) to Tmr(k) is 

an eliminating step (4.13) and (ii) if this step is a noneliminating step (4.12). 
In case (i) we simply follow B.R.S. We define 

rx 

(4.18) b2m+1 (x) = f (b2m (2x) - b2mr(X))dx/(4m - 1), 

rx 

(4.19) b2m+2 (X) = f b2m+1 (X) . 
Since b2m(x) is of class E, Lemmas 1 and 3 indicate that b2m+2(x) is also of class E. 
Then we calculate Tm(k) - If from (4.13) and (4.17). We find directly 

Tm (k) _ If 4k L (b2m (2k+lX) - b2r (2kx))f(2m)(X)dX 

(4.20) m (k+) (k) 
+ ;4mAm_l,j A-A _, j (f (2j-1) () 

f f(2j-1) 
(o) 

We may carry out an integration by parts twice and set 

(4.21) Am, =k ? 

(4.22) A) = (4mAm-+l)j - Am-1,j)/(4r - 1) j = 1, 2, ** m - 1. 

This puts (4.20) in the same form as (4.17) but with m - 1 replaced by m. 
In case (ii) we proceed in an analogous but different way. We define 

(4.23) 1 b2m(2kx)dx = K2mr, 

(4.24) b2mr(X) = b2m(X) -K2mn, 0 < x < 1 

(4.25) b2m+1(X) 
= 

b2m(x)dx 0 
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(4.26) b2m+2(x) = J b2m+i (x)dx 

Since b2m(X) is of class E, Lemmas 1 and 2 show that b2m+2(X) is also of class E. 
Using (4.12) and (4.17) it follows that 

Tm(k) - If = 4-mk f (b2m(2kX) -K2m)f(2m)(X)dX 
0 

(4.27) p m-1 
+ 4mK2m]J f (2m) (x)dx + (k) j(f(2j--)(j) f(2j-1)(0) 

0 j=l 

The second term may be written 

(4.28) A?mk) (f(2m-1) (1) - f0(2m-i) (0)) 

where 

(4.29) A = 4-mkK2m . 

We also define 

(4.30) Aj = A = 1,2, **,m-1. 

The integrand in the first term is b2m(X). Integration by parts twice leads to 

I 

Tm(k) - If = 4-(m+l)k b2m+2 (2kX) f(2m+2) (X)dX 
(4.31) M 

+ k) (2 1 ) (1)(0)) 

This is of exactly the same form as (4.17) with m - 1 replaced by m. 
Thus in both cases (i) and (ii), corresponding to the step being eliminating or 

noneliminating, the form of (4.17) is retained after the next step. Moreover, since 
in each case b2m+2(X) is of class E, b2m+2(2kX) is of definite sign. This establishes the 
theorem (4.14). 

The above proof constitutes rather a lengthy proof of the Euler-Maclaurin sum- 
mation formula if we choose all the steps to be noneliminating. On the other hand 
if all the steps are eliminating, it reduces to the standard treatment of B.R.S. 

Theorem (4.14) has the immediate corollary obtained through the intermediate- 
value theorem: 

COROLLARY. 

(4.32) Tm(k) - If = Cm(k)f(+2) (0) + A (k)j(f(2-1) (1) f(2j-O) (0),) 

where 0 < t < 1 and 

(4.33) Cm(k) = 4-(m+l)k f b2m+2 (X)dX 

We note that the numbers A (k) are generated according to one or another of the 
several relations (4.21), (4.22), (4.29) and (4.30). However, if the nth step is an 
eliminating step, i.e., 
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(k+1) T(k) 
(4.34) T (k) =Ti(kj + T1jn'_ - T.1 (4.34) -1 

~~~~~~~~4nl 1 

it follows from (4.21) that 

l(k 0. An,n O. 

However, Amk) is obtained by one of 

Am,n = (4mAm_+l) Am_1,n)/(4m 1) 

or 
A (k) = A (k) m ,n - m_l ,n. 

Thus, in either case, letting m = n + 1, n + 2, ***,in turn we get 

Am,n = O all m > n. 

This simply confirms that the procedure does in fact eliminate those terms in the 

Euler-Maclaurin series which it is designed to do. 

We state this as a corollary: 

(4.35) Amkn = 0 if the nth step is an eliminating step. 

5. A Bound on the Truncation Error in a Particular Case. We now restrict our- 

selves to the particular sequences in which we eliminate terms in h2, h6, h'0, 

That is, we proceed as if 

(5.1) E(h) - c2h2 + c6h6 + c1ohl' + 

This is appropriate in the case of contour integration round squares. The T-table 

is then exactly as illustrated in Fig. 1 the odd-numbered steps being eliminating 

steps and the even-numbered steps being noneliminating steps. Thus 

(5.2) Am)j?= 0 jodd. 

It is clear from the construction of the T-table that T2p) is a well-defined linear 

combination of To( j = 0, 1, ... , p. Thus 

(5.3) T(p)= 0yOTo () + y7To (' + .. + ypT (P) 

Since 

(5.4) To(k) = R[2k, l]f 

the Euler-Maclaurin summation formula takes the form 

(5.5) To(k) - If = E C _ 
f_(2j-1) ( I)) + f (4p+2) (X) (X)dX 

where +(x) is bounded. Consequently, using (5.3), 

P 2p 
P Y f2j1 1 

2p- If 
k-0 

7k C2 
7k= 

(f(i-)() 

(5.6) k=O 1 k=O 4 

+ f f(4p+2) (X)+ (X)dx 
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where +(x) is bounded. However, according to the theorem 

2p 

(5.7) T)- If = EA () j(2j1 (1) f(2j-1(0)) + C(0)f(2p+2)w 

These two expressions for the same discretization error may be used to identify 
corresponding terms. By successively choosing f(x) to be a polynomial of degree 
0, 2, 4, 6, *.. ,we find 

p 

(5.8) E ek 1 2 
k=O 

p 

(5.9) E Yk/4k = A, j = 1, 3, ..., 2p - 1, 
k=O 

p 

(5.10) E: 7k/4 ki= A2'po,j/c2i, j = 2, 4, .. * * 2p,2 
k20 

p 

(5.11) C2p= C4p+2 E .Yk/4(2+. 
k=0O 

The summation in (5.11) is algebraic in character. The p + 1 equations (5.8) and 
(5.9) together define 'Yk (k = 0, 1, * , p). The sum in (5.11) may be expressed in 
the form of a quotient of two determinants of the Vandermonde type containing 
many common factors. The result is 

(5.12) N 
-2p 

4 Pk () (1 - 24) (1 - 2)... (1 - ) 

k=O ~~~(1 - 2)( - 26). 1- 2(42) 

The factor of 4(P2) in this expression is a number lying between 14 and 1 4. Since 
according to (4.1a) 

(5.13) C4p 2 r 4p+2 

and 

(5.14) 1 < t(4p + 2) < t(6) < 1.1, 

we may combine (4.33), (5.11), (5.12), (5.13), and (5.14) to give the following result 

Cf(k) = (2p+1)kC(O) w2p =4- 2p 

(5.15) = 4(2p+1)k 2?(4p + 2) 4-(pX) I (1 - 423) (1 - 42j+1)- 

(2r ~~~j=1 

or in a more useful form 

(5.16) =C(k) 4-(2p+l)klc(0)i < 4-(2P+1)k 34(P2) 

This completes the determination of Cfk). We complete the estimation of the trun- 
cation error C2kPf(4+2) () in the case in which f(x) is a complex analytic function 
in a region containing the interval of integration [0, 1]. In this case, if p is the short- 
est distance from this interval to any singularity of f(z), it follows that for any 



NUMERICAL CONTOUR INTEGRATION 573 

fixed E > 0 there exists a number K(e) such that 

(5.17) jf(P)(x)/p!j < K(e)/(p -E); 

consequently 

(5.18) |C2Pf(4p+2)(Q)j < 3K(E)442)(p (4p + 2)! 

In the case of a simple pole being the closest singularity we may take e = 0. 

6. A Square Contour. In this section we consider integration round a square 
contour. The results of Sections 4 and 5 are required in this section to bound the 
discretization error. 

We consider first the use of the trapezoidal rule with (complex) step length 
h = (b - a)/m to carry out contour integration from a to b along a straight line 
in the complex plane. Since f(z) is an analytic function we may apply the Euler- 
Maclaurin summation formula 

m rb 2p 
h jE"f(a + hj) - f (z)dz = C2rh2r {f(2r-) (b) _ f(2r-1)(a)- 

(6.1) __ a= 
+ b 
+ (Z)f (2p+2) (Z)dZ 

where +(z) is bounded on the line ab. 
We now consider the closed polygonal contour whose vertices in order are the 

complex numbers a,, a2, ** , a.. We suppose that the trapezoidal rule with step 
length 

(6.2) hj = (aj+i -aj)/m 

is used for the section between aj and aj+,. Applying (6.1) we find 

Ehk 
" f (ak + jhk) - f(z)dz 

k=1 c(al,a2, ...an) 
2p N 

(6.3) = EC2r f (2r1)(ak) {h2r1- h2r} 
r=l1 k=l 

+ | c,(z)f(4p+2)(z)dz 

where ~p(z) is bounded. The particular case in which we are interested is that in 
which a,, a2, a3, and a4 are the vertices of a square of side 2R, and the same step 
size is used on each side. That is, we set 

(6.4) h = -ih2 = -h3 = ih4 = 2Re i/m 

where 4 is the angle between the real axis and the first side. With this choice of 
step size, 

(6.5) hkr I = hkr r = integer, 

hence the terms in (6.3) with r even are zero and 
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4 m f 
E hk E f(ak+ jhk f - f (z)dz 
k=1 j=O 

p /9 \4r-2 

- E2c4,2exp (-2i(2r -1)+) 

(6.6) X {f4r-' (a2) +f( 3) (a4) - f(4r- (ai) - fr-3) (a3) I 

+ Jo (Z)f(4,+2) (z)dz 

This asymptotic expansion for the discretization error contains terms in m-2, m-6, 
m-10, .. *, but not in m-4, n-8, rn'2, * * *; that is, it is of the type (4.8). We use 
trapezoidal sums based on halving the mesh ratio at each step. Thus we set 

(6.7) Mi= 2 

and define 

(6.8) sai - a l/ ak2"f(ak +j (ak+- ak)) 

k=1 rn - - 0 

The modification of the standard Romberg T-table, described in Sections 4 and 5 
may now be constructed. We obtain in this way a linear combination of So(i), 
i = 0, 1, .. * p 

(6.9) 2p= 70^So + 7SO(') + + ypSo 

where the ya are defined by (5.8) and (5.9). Eq. (6.6) may now be written in the 
form 

(6.10) So - f(z)dz = E r- + f 4g (z)f (z)dz 

and it follows directly using (6.9), (5.8) and (5.9) that 

(6.12) s2?- f (z)dz= f b(z)f 4p+2)(z)dz 

where 

C(Z) = 
e-'tfmi(Z) 

is bounded on the sides of the square. 
We now obtain a bound on this remainder term. Considering for the moment 

the first of these sides aia2, a simple change of variable, 

(6.13) z = a, + (a2-al)t, 

(6.14) f(z) = Fi(t) , 

gives 
m (a2 

hi E1 f (a, + hij) - f (z)dz 
(6.15) (a2 1 { - f F()t 
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Thus So(i) is the sum of four terms, one of which is given in (6.15) with m = 2i. 
Consequently, 

(6.16) S2p,- f (z)dz = - iSo(i) ff(z)dz 

may be expressed as the sum of four terms, one of which we denote by A1: 

(6.17) A1 = (a2- a,) E ai( E F1(i)-j Fi(t)dt). 

Sections 4 and 5 were devoted to obtaining a bound on an expression of this type. 
There it was shown that 

p 

(6.18) A1 = (a2- a,) EA2(p) 2 j (F (4j-1) (1) + F (4j-1) (0)) -r (a2- ai)Ei 
j21 

where 

(6.19) El= 2p I' 

and is bounded by 

E1J 
< (4p + 2)! 3K(e) 

4 (p2) (2n(p_-)) 4p+2 

Here the suffix 1 indicates that the quantities refer to the side ala2 and we have 
used (5.2), namely 

(6.20) A(?)j = 0, j odd. 
To obtain a bound for S(O) we add to (6.18) the similar expressions corresponding 
to the other three sides. In virtue of (6.12) there are no terms in f(4i-1)() - 

f(4i-1)(0) in the result. Consequently, the first set of terms on the right-hand side 
of (6.18) combine with similar terms from the other three sides to give zero. Thus 

2?- f (z)dz = (a2- ai)Ei + (a3-a2)E2 
(6.21) + (a4- a3)E3 + (a, - a4)E4. 

Sincef(z) is an analytic function, so is Fi(t). The quantity p1 is the shortest distance 
from a singularity of FI(t) to the interval [0, 1] and 2Rpi is the corresponding dis- 
tance in the z plane. Thus we set 

(6.22) d= 2Rminp1 

and 

(6.23) K(e) = 4maxKj(E). 
We find 

(6.24) 2-|Eff(z)dz - 4(p2) (4p + 2)3()/ ) 
4 (2cr)e of2 (d/2R -in 4ape 2 

The case of interest in Paper A is 
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(6.25) f(z) = () 

where A(z) is an analytic function. In this case f(z) has only simple poles and we 
may set e = 0 in (6.24) above. 

In terms of the number of iterations the convergence rate indicated by (6.24) 
is superlinear. However, each iteration doubles the number of function evaluations, 
N. If we express E in terms of N, we find 

1 __10_2N___4__ogN_5____ 
(6.26) E (N) -- 

const21og,N * (4(log2(nPe/4)) as N o-* 0 

For large N the dominant term in this expression is 1/N2og2,N. The ratio of the 
error in two successive iterations is given by 

(6.27) E (2N) 26 (ogN2 as N-> oo E(N) ir4 N 4 

The convergence rate is slower than the linear rate exhibited by circles (see (3.19)). 
There 

(6.28) E(N) .IconstAN, IAI <1 as N-->o 

and 

(6.29) E(2N) -AN as N-> oo 
E(N) 

7. Discussion. Contour integration round a closed contour is a discipline re- 
freshingly free from many of the annoying restrictions encountered in the more 
familiar field of one-dimensional integration. There, if the region of integration 
passes near a singularity of the integrand, one must live with this fact. To evaluate 
a contour integral, one is usually free to adjust the contour to avoid passing near 
these singularities. 

This paper represents only a first short step into a wide field. Two of the sim- 
plest contours have been treated, and then only the obvious quadrature rules have 
been applied. There remains considerable scope for further investigation. 

However, even this investigation provides an insight into the question of alter- 
ing the contour. Perhaps the most striking difference between conventional quad- 
rature and contour integration is this. In both of the cases considered here, each 
iteration involves doubling the number of function evaluations. At the end of m 
iterations, 2m function evaluations have been made. The next iteration requires a 
further 2m function evaluation. The user may prefer to abandon the particular 
contour for an apparently more favorable one. If he does this he may carry out m 
iterations on the new contour at the same cost as the (m + 1)th iteration on the 
original contour, the cost being measured in terms of function evaluations. 

We look at this in more detail in the case of a circular contour. We suppose that 
the original contour 1 has a nearest singularity (or pole) at a distance pi, and that 
for the alternative contour 2, the distance to the nearest singularity is P2; in both 
cases we measure distances in terms of the radius of the contour. We denote by 
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E1(N) the error after N function evaluations using contour 1 and E2(N) similarly 
with respect to contour 2. If we already have a result based on N function evalua- 
tions using contour 1, the error after a total of 2N evaluations is either EI(2N) or 
E2(N), depending on whether we carry on with contour 1 or we change to contour 2. 

A trivial calculation based on (3.19) shows that 

(7.1) El(2N) const (A ) - const (1 - (P2-2p,)) E2(N) A2/ 

Thus if the user is confident that the new contour will avoid all singularities by a 
margin of more than twice the corresponding margin for the previous contour, an 
immediate change is indicated even if the (m + 1)th step was the final step to be 
made. 

If the mth step is an early step in the iteration and r further steps are likely 
to be carried out, the appropriate comparison is between E1(N) and E2(N). The 
wasted 2m function evaluations are only a small proportion of the total number 
used. Thus at an early stage, the user should be ready to abandon the contour at 
the slightest hint that he can make any improvement in the asymptotic behavior 
of E. 

For square contours a similar analysis leads to 

(7.2) El (2N) (log2N N)2 N 4log, (P. /2p,) 

E2(N) 7r4(P2/2p1)' 

This form is too complicated for any very simple criterion. However, if P2 > 2p1, 

the user might well be advised to change the contour even if this step is the final 
one. 

Of course, if the user knew in advance where the singularities lay, he could 
choose the optimum contour before starting the integration. In practice, he is more 
likely to become aware of a nearby singularity as the integration proceeds; but he 
will not know about other, more distant singularities that may lie near his pro- 
jected alternative contour. Hence the choice of a new contour will usually be based 
on incomplete evidence. However, the estimates given here show that it may be 
worthwhile in case of trouble to try several different contours, and the integration 
procedures of Paper A have been programmed to take advantage of this possibility. 
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