
A Construction of Nonnegative 
Approximate Quadratures* 

By Philip J. Davis 

1. Introduction. In a paper which appeared in 1957, V. Tchakaloff [1] proved 
the following theorem. Let B be a closed bounded set in the plane with positive area. 
Let Oi, q$2, * , qN be N linearly independent and continuous functions of x, y in B, 
of which one does not vanish in B. Then we can find N points Pj:(x , y,) lying in B 
and N weights wi _ 0 such that 

(1.1) fJqSjdxdy= 2wikj(Pi), j= 1,2,. -y,N. 
Bi- 

Tchakaloff's demonstration is a very beautiful one, involving the theory of convex 
bodies. A separating hyperplane is employed and a nonconstructive proof is ob- 
tained. The theorem is valid for weighted integrals of dimension d _ 1. 

Equivalent results on finite moment spaces were obtained earlier by various 
authors. See, e.g., Karlin and Studden [2, Chapter II]. Tchakaloff's independent 
work appears to be the first to formulate the result explicitly as in (1.1), thereby 
stressing its numerical analysis aspect. 

This result is interesting for numerical analysis because: (1) Quadrature rules 
with nonnegative weights are more favorable than rules with mixed weights in that 
they lead to more stable computations; (2) Interpolating quadrature formulas de- 
termined by brute force methods do not often yield weights that are of one sign. 

The purpose of the present paper is to give an alternative proof of Tchakaloff's 
theorem which is constructive in its nature. The present proof is also a more "ele- 
mentary" one than Tchakaloff 's in that it makes use only of the familiar raw ma- 
terials of elementary numerical analysis. 

Extensions and numerical applications will be published subsequently by the 
author and by M. W. Wilson. 

2. An Alternate Proof of Tchakaloff's Theorem. In this proof we limit ourselves 
to integrals of dimension d = 2 and to functions 41, 02, ..., I ON that are monomials 
(i.e., powers) in x, y. This limitation will still enable us to exhibit the essential 
features of the method. 

We begin with a number of very simple lemmas. 
LEMMA 1. Let 4 i(x, y) = 1, +2(X, y) = x, k3(X, y) = y, 44(X, y) = X22 

+5(X, y) = Xy, +6(X, Y) = Y2, be an arrangement of the powers xiyi, 0 _ i, j < Xo. 

For any integer N _ 1, the functions 41, * ,N are linearly independent. That is, if 
f(x, y) = 7iN=l ajoi(x, y) _ in a region R, then ai = O, i = 1, 2, N. 

Proof. Call m + n the degree of the monomial xmyn. We have dm+n xmyn/axmnyn 

= mMn!, and am+nxm'yn'/axmayn = O if m' + n' = ?n + n but (m', n') # (m, n), or if 
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m' + n' < m + n. Assume that f 3 0 in R. Now let ajxmyn be a monomial of high- 
est degree in f. Then, am+nf/axmayn 0 O = am m!n!. Hence aj = 0. Now iterate this 
process and conclude that all the coefficients vanish. 

COROLLARY. If 6EN designates the linear space of functions >2ti ai4i, then GIN is 
of dimension N. 

LEMMA 2. Let B be a region in the x, y plane. Then, we can find points P1 = 

(xl, y1), *.. , PN = (XN, YN) in B such that 

q1(Pi) 02(P1) ... **N(Pl) 
(2.1) #0. 

51 (PN) q2(PN) *N (PN) 

Proof. Select any point in B as P1. Then 45l(P1) z 0. Consider the function 

01(p1) 02(Pl) - g(p) 

This is a linear combination of +1(P) and +2(P). If g(P)= 0 in B, it would follow 
from Lemma 1 that 41(P1) = 0 and c2(Pl) = 0. This is impossible. Hence there is 
a P2 such that g(P2) # 0. Consider next the function 

Oi (pi) 102(Pl) 03(PI) 
01(P2) 42(P2) 43(P2) = h(P). 
+1(P) +2(P) 03(P) 

This is a linear combination of q+1(P), +2(P), +3(P). If h(P) = 0, all coefficients 
would be zero. But the coefficient of +3(P) is g(P2) # 0. In this way we may pro- 
ceed step by step. 

It should be observed that if Qi, , QN are N distinct points in B, it does not 
necessarily follow (as in the case of polynomials of one variable) that Ioi(Qj) I # 0. 
However, the following may be asserted. 

COROLLARY. Given N points Q1, Q2, *, QN in B, and given e > 0. Then we can 
find N points Pi, P2, **,PN such that IQ - Pil < , i = 1, 2, * N*, Nand 
loi(Pi) I 0 O. 

Proof. Select P1 = Q1. The above argument for g(P) yields a point P2 in any 
neighborhood of Q2 such that g(P2) # 0. We may now proceed step by step. 

LEMMA 3. Given a rectangle R: Xi < X _ X2, Y < y ?< Y2 and a fixed integer 
N > 1. We can find an integer k(N) and k(N) points P1, P2, * *, Pk(N), and k(N) 
weights w1 > 0, W2 > 0, W kN, wkcN) > 0 such that 

k(N) 

(2.2) JJ jdxdy= ,w41j(P ), j= 1,2, ...,N. 
R =1 

Proof. This can be accomplished in many ways. For example, one can use a 
product rule of Gauss rules of sufficiently high order. To be more specific, let the 
highest power of x and y in 45, 42, * * q5N be respectively p(N) and q(N). De- 
termine p*(N) and q*(N) such that 2p*(N) - 1 > p(N) and 2q*(N) - 1 > q(N). 
Set k(N) = p*(N)q*(N) and form the product rule of Gauss rules of order p*(N) 
in x and q*(N) in y. This product rule will integrate over R exactly all monomials 
xiyi, 0 < i < 2p* - 1, 0 < j ? 2q* - 1, and a fortiori oi, 02, * - -, ON. The points 
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P1, P2, are (xa,y,s) where {xa } and {ys } are the Gaussian abscissas along the x 
and y axes respectively. The weights are products of Gaussian weights and hence 
are positive. 

COROLLARY. By taking Gauss rules of odd order, one of the points Pi will be the 
center of the rectangle. 

LEMMA 4. Given a region B and N distinct points P1, P2, * , PN lying in the in- 
terior of B. Then we can find N squares Si: x1 <_ x _ X2iy Yli _ y < Y2i, i = 

1,2, **, N, sufficiently small and placed in such a manner that 
(a) Si C B, 
(b) Si n s = o ifip# j. 
Proof. Take, e.g., Pi as the center of the squares and take the diameter of the 

squares less than 2 minli,_jN /Pi - Pjl. 
LEMMA 5. Given a bounded region B and N distinct points P1, P2, * , PN in B. 

Given a a > 0. Then we can find an integer s (s s(B; P1, * - *, PN; 6)) and s rec- 
tangles R1, R2, * * *, R, with sides parallel to the x and y axes such that 

(a) The RX include the squares Si already constructed in Lemma 4, 
(b) Ri C B, 
(c) RinfRj?=0ifi#j, 
(d) area B- 1 area Ri < a. 
Proof. Take R1 = Si, ..., RN = SN. For the remaining rectangles, pack 

B- UNL Si with nonoverlapping rectangles sufficiently densely so that the area 
of B is approximated by 1 area Ri to within S. The exact details here do not have 
to be spelled out. 

Remark. If N is held fixed but if a -* 0, note that the first N rectangles, the first 
of which contains P1, the second P2, etc., may be kept fixed. 

THEOREM. Let B be a bounded region in the x-y plane. Let N ? 1 be fixed. 
Then we can find points T1, T2, * , TN in B and nonnegative weights wi, W2, * * wN 

such that 

rr N 

(2.3) JJ4S,dxdy = ,w j(Ti), j = 1,2,* ..N. 
B i=1 

Proof. I. Select N points P1, * * *, PN in B such that Io 4(Pj) $ 0. This is pos- 
sible by Lemma 2. Pack B with rectangles R1, R2, * *, R, as in Lemma 5. The 
relevant a will be specified shortly. The first N rectangles will be squares 
Si, - - *, SN. Over each rectangle Ri, define a positive quadrature rule as in Lemma 
3. In Si, * * *, SN make sure that one of the nodal points in the respective squares 
is the center of the square, i.e., Pi, where i = 1, 2, - * *, N. 

Let us, Ui (i = 1, 2, * * ., n) designate the weights an-d respective locations that 
occur in all the rules defined over all the rectangles. Note that ui > 0. Note further 
that we may arrange the order so that Ui = Pl, U2 = P2, * * , UN = PN. 

For any matrix A = (aij), let I A I designate the matrix norm maxi E>j laij 
and for a vector v = (v1, ) let Ilvii designate the compatible vector norm 

maxi Ivil. Let M = maxl,j<N SUPPEB 14j(P)l. Now select a such that 

(2.4) 0 < a < m-mi <NMI 
a2 (P )-1 
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Use such a value of 5 in packing B with rectangles. (Note the order of procedure 
here. N is given. Determine P1, i *, PN. Put squares Si around Pi, i = 1, 2, *, N, 
and in each square define a product Gauss rule of which one node is Pi and the 
corresponding weight is ui. Next determine 5 from (2.4) and use it to form a pack- 
ing of B by rectangles into which we also insert a positive quadrature.) 

If R = Us=R ,wehave 
rr n 

(2.5) ]j'dxdy= ,u4j(Ui), j = 1,2, ...,N. 
R*= 

Let 

(2.6) JIB f ,dxdy Jff jdxdy, j=1, 2, * ,NN. 

Then, 

(2.7) 1Ei?f < IjlIdxdy _ MJ dxdy MS, j = 1,2, ,,,N. 
B-R B-R 

Now (2.5) can be rewritten as 

rr N n 

(2.8) i qjdxdy - = ui4,(Ps) + ui0Ui). 
B ?1i=N+l 

Now consider the N X N system in variables t = (t1, tN) 

N 

(2.9) Et4j (Pi) = E,j j = 1,2, ...,N. 

If E = (El, 2E2, E * N)', (2.9) has the solution 

(2.10) t= =oj(P )]-le 

and hence by (2.7) and (2.4), 

(2.11) < 11[+(P0)1-1lMa 
< min ui. 

1?:! i?<N 

Hence, 

(2.12) max ltil < min ui. 
1_ i<N 1<i<N 

Combining (2.9) and (2.8) we obtain 
N n 

IJ pdxdy = (ui + ti)cj(Pi) + E uqj(Ui) 
(2.13) B t=1 N+1 

= ui'qSj(Ui) j= 1,2, ...,N 

where, in view of (2.12), uil > 0. 
II. The object of part I was to produce a quadrature formula (2.13) with posi- 
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tive weights. The abscissas or nodes are U1, U2, ***, U,,, where n may be very 
much larger than N. We shall next show that we may reduce n to N by using an 
appropriate subset of { U* }. This can be done by a method of E. Steinitz [3]. 

The linear space (PN of functions E a*i defined on a region R is of dimen- 
sion N. Hence, the algebraic dual space (the space of all linear functionals defined 
on 6'N) is also of dimension N. Among the n linear functionals 

(2.14) Li(f) =f(Uj), 

at most N can be linearly independent. Hence if n > N, we must have 

(2.15) ajLj + * + anLn = ? 

where not all the a's vanish and, in fact, one of the a's may be assumed to be 
positive. Define 

(2.16) L = ul'Ll + u2'L2 + * + un'LnL (Ui' > 0) 

where the ui' are from (2.13), and set 

(2.17) a= max -i 
1 _i _ "'n U irI 

Note that a > 0, uui' - a> 0 and furthermore, ou/' -a = 0 for at least one i. 
From (2.16) and (2.15) we obtain 

Tu,' - a, cU2 -a2 TUn~ -an (2.18) L Li + -L2+ Ln . 

Thus, L has been expressed as a linear combination of at most n - 1 of L1, L* *L 
with nonnegative coefficients. Iterating this process, we arrive at 

(2.19) L = wll + w2L2 + **+ WNL Wi _ . 

Hence, from (2.13) 
ff ~N 

(2.20) JJ4fjdxdy= w43j(U), wi _ o, j = 1,2, ...,N, 
B ~~~i1 

where the Ui' (i = 1, 2, * .,N) are a subset of Ui(i = 1, 2, ***,n). 
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