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Abstract. Values of the flux components are often desired in potential flow prob- 
lems. Second-order correct finite-difference analogs are developed for the differential 
equations defining these flux components. Two iterative methods of solving the 
resulting finite-difference equations are presented. Experimental results indicate the 
most efficient value of the iteration parameter and demonstrate that the number of 
iterations required is approximately proportional to the square root of the number 
of points in the grid. 

1. Introduction. Many important physical problems can be described by a poten- 
tial field. Included in these are the flow of heat, the flow of electricity, and the flow 
of fluids in porous media. For ideal fluid flow problems a potential is defined only to 
aid in the solution, and the velocity is the dependent variable of interest. Even in 
cases where the potential corresponds to a real physical variable, such as heat con- 
duction and flow of fluids in porous media, the flux is often the variable of interest. 

For two-dimensional Cartesian co-ordinates, the differential equation which de- 
fines the potential is 

(1) 92T+ 2=2T 
dy dz 

where T is the potential, y is one Cartesian co-ordinate, z is the other Cartesian co- 
ordinate. 

The flux components can be defined in terms of the potential as 

(2a) v =-kd 

(2b) w = -kd 

where v is the flux component in the y direction, w is the flux component in the z 
direction, k is the transport coefficient. 

A great number of potential flow problems can be solved by various analytical 
techniques. However, a numerical solution is required for many boundary condi- 
tions. A number of methods have been developed for numerically solving Eq. (1) for 
the potential. When values of the flux are desired, the flux components must then 
be determined from the numerical solution for the potential by finite-difference 
analogs to Eqs. (2a) and (2b). 
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2. Equations Defining Flux Components. The method described in this paper 
yields a numerical solution directly for the flux components from the defining partial 
differential equations. Since there are two flux components in the two-dimensional 
case, two equations are required. The first of these results from the continuity 
principle and is the equation which yields Eq. (1) in terms of the potential. In terms 
of the flux components, this equation is 

(3) dy + "lp 
= . 

The second of these equations is the irrotationality condition which must hold in 
order for the potential to be defined by Eq. (2). This relation is 

(4) aw _ v 0 
ay Olz 

These equations are completely first order, and they contain the first derivative of 
each dependent variable with respect to each independent variable. 

3. Boundary Conditions. Common boundary conditions used in conjunction 
with Eq. (1) are the specification either of the potential or of the normal derivative 
of the potential along the boundaries. The most general condition, of course, is 
specification of a relation between these two along the boundaries. Specification of 
the potential along a boundary is equivalent to a specification of the tangential flux 
component along that boundary, while specification of the normal derivative of the 
potential is equivalent to a specification of the flux component normal to the bound- 
ary. The numerical method of solution for the flux components, described herein, 
has been tested with several types of boundary conditions, including the general 
type for which a relation between the two flux components is specified. 

For purposes of illustrating the numerical method, the boundary conditions 
used are 

(5a) w(z, 1) = f(z), 

(5b) w(O, y) = g(y) , 

(5c) v(z, O) = p(z), 

(5d) v (1, y) = q(y) . 

These boundary conditions are equivalent to a specification of the potential along 
the adjacent sides for y = 1 and z = 1 and of the normal derivative of the potential 
along the other two adjacent sides where y = 0 and z = 0. 

4. Finite-Difference Equations. A set of grid points with equal increments in the 
two directions is imposed on the region. This grid is illustrated in Fig. 1. Indices are 
used to designate location in the grid. These indices are defined by 

(6a) Zy = (i- 1)Az for 1 < i < R, 

(6b) Yw = (j- )ihY for1 <j < S= 

(6c) with Az = Ay. 
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For the case of a square region, R S, but these limits will be used as given in Eq. 
(6) so that the method can be applied directly to a rectangular region. Two sub- 
scripts are used with values of the dependent variables. These are defined as 

(7a) wj,j = w(zi, yj)I 

(7b) vi,j = V(zi, y) . 

The boundary conditions of Eq. (5) are shown in Fig. 1 in terms of the discrete 
variables. 

+~ + ,4- 

J-2 J-1 J J+ 

y 

FIGURE 1. Finite-difference grid 

The first derivatives of Eqs. (3) and (4) are replaced by centered differences. 
These differences are written about the point Zi-1/2, YJ-1/2 which is designated by 
the cross (+) in Fig. 1. However, only values of the dependent variables on the grid 
points are used in the finite differences. This method of writing the finite differences 
has been described previously for equations describing transient, countercurrent 
flow problems [1]. The analogs for the derivatives of v are 

(8a) 0v z 1 [vi z-vi-l i + vi -lvi-, i-l 
az 2 Az ~Az j 

t9V I j' - vi' _ ViIj 1 j - 'j_ (8b) ay 2 L A - + A- 

Those for w are similar. These analogs are second-order correct. The truncation will 
be discussed further in the next section. 

Two finite-difference equations can be written for each square of four points in 
the grid. After the space increments and the factor 1/2 have been eliminated, these 
equations become 

(9) Wij - Wi-l,j + Wi,j-Wi-W,j-1 + Vij- Vi,j-1 + Vi-l,j-Vi-l,j-1 = 0 

(10) wij - wij_1 + Wi_,j - Wi_lj. 1 - Vi,j + Vi-lj- Vi,j.-1 + Vi-1lj,- = 0 

Each equation contains eight values of the dependent variables, two at each of the 
four points. These equations, together with the boundary conditions, define the 
values of w and v at all points in the grid. Since the boundary conditions are specified 
on opposite boundaries in both directions, a simultaneous solution of all the equa- 
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tions is necessary. Two iterative methods of effecting this solution are presented in 
later sections. 

5. Truncation Error. The complete expressions for the first derivatives are ob- 
tained from a Taylor series in two independent variables. The truncation error is 
obtained by substituting these expressions into the original differential equations. 
The expressions for the errors can be simplified by use of relations obtained from 
repeated differentiation of Eqs. (3) and (4). The truncation error for the finite- 
difference analog to Eq. (3) is 

(11) E 4n+2 4n+3) 2n+1 

and that for Eq. (4) is 

(12) E4 = -2 nEd( 2 ) (a4ff+1r=E 1) (2r)!(4n - 2r + 3)! 

6. Corresponding Difference Equation in Potential. A finite-difference equation 
in terms of the potential can be obtained from the finite-difference analog to Eq. (3) 
and to analogs to Eq. (2). Second-order correct centered difference analogs to Eq. 
(2) are used to obtain the flux components from the potential. The location of the 
points used in these analogs are shown in Fig. 2. In order for the flux components at 
the intersections of the grid lines to be determined from values of the potential by 
these centered analogs, the potential must be known at the points denoted by the 
crosses (+). A typical equation for determining a flux component is 

(13) = - k( ) (Ti+i1/2,j+1/2 - T12, j1/2+ T i1/2,j+1?2- T 1/2j-1/2) 

When such analogs for the flux components at the points denoted by circles (0) in 
Fig. 2 are substituted into the finite-difference equation for Eq. (3), the finite- 
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FIGURE 2. Location of points for potential 
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difference equation for the potential is obtained. This is 

(14) Ti+1/2,j+1/2 + Ti+1/2,j_3/2 + Ti.3/2,j+1/2 +Ti-3/2,j 3/2- 4Ti--/2.01/2 

2 (Ay)2 

This equation is the familiar five-point analog to Eq. (1) with the grid lines rotated 
450 from those used to define the flux components, as shown in Fig. 2. Furthermore, 
the increment size is i1 2 times that used in the grid for the flux. When analogs simi- 
lar to Eq. (13) are substituted into the finite-difference analog to Eq. (4), the irrota- 
tionality condition, all terms cancel as they should. 

7. Nature of Iterative Methods of Solution. As mentioned previously, two iter- 
ative methods of solving Eqs. (9) and (10) will be described. The first method effects 
the simultaneous solution of the finite-difference equations from a single row in the 
grid. In the second method, the equations from two adjacent rows in the grid are 
solved simultaneously. The methods can be formulated and carried out either in the 
y-direction or in the z-direction. In fact, the convergence is more rapid if the itera- 
tion is carried out alternately in the y-direction and then in the z-direction. How- 
ever, iteration in only one direction is convergent. In the presentation of the methods 
in this paper, the solution is given for one or two rows of equations in the y-direction. 

The iteration procedure is begun at a boundary, where the values of one of the 
flux components are known for a whole row of points. The other flux component is 
unknown along this row, as are both components on the second row of points. In the 
equations presented below, the iteration is begun at the z = 0 boundary, where w is 
given by the boundary condition. See Fig. 1. The finite-difference equations, Eqs. (9) 
and (10), relate the dependent variables along these two rows of points. However, 
there are three rows of unknowns and only two rows of equations. It is necessary, 
therefore, to assume values of v along the second row of points. Values of v on the 
first row of points and w on the second row are then computed from Eqs. (9) and 
(10) based on this assumption. These computed values of w are then used with as- 
sumed values for v on the third row to compute values of w on the third row and v 
on the second row. This procedure is continued across the region. For the last row of 
equations, however, the values of v do not need to be assumed, since they are given 
by the boundary condition, as shown in Fig. 1, for z = 1. The conditions on each 
boundary are thus introduced once on each sweep across the region. On the next 
sweep of the region, the values obtained in the first sweep are used in place of the 
assumed values. 

In order to increase the rate of convergence, an iteration parameter, e, is intro- 
duced into the Eqs. (9) and (10). These equations become 

(m+1) W(m+1) + (m+1) (m+1) (n) (n) (m+1) (m+1) 

(9a) Wi, 
i-l j -1-Wj,j i_ 

- 
j_ I-, j, - -- i1- 

= e[(Wij-1 - W ,ti,) + (V - V i-,j)] 

(m+l) (m+1) (m+1) (m+1) (m) (m+l) (in) (m+1) 
(lOa) W?, - Wi,j_ + Wi_,j- W _ - -vi,] + vZji-l i-Vi,j- + Vi-1,j- 

= E[- (W ij-1 W i,ji) + (Vi-i,j - vij)] 

The superscripts denote the level of the iterate. On the left side of the equations, 
only two values at the old iterate (denoted by m) are used. These are the values of v 
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on the ith row which were assumed for the initial sweep. The values of w on the 
(i - 1)th row are known at the new iteration level from the computations on the 
previous row of equations. The values of w on the ith row and v on the (i - 1)th 
row are to be computed from the simultaneous solution of this row of equations. The 
iteration parameter is introduced into the right sides of the equations as a coefficient 
of the differences between the old and the new values of one v and one w. 

The values of v and w used in this iteration term are not located at the same 
point in the grid. Reference to Fig. 1 will show that the v appearing in this term is 
located at the point designated by the square (E) and the w at the point designated 
by the circle (0). The location of the v is the one point of the four in the square which 
is farthest from the boundary conditions specifying v in both the y- and z-directions. 
The w point is similarly located. 

8. Single-Row or Point-Wise Iterative Method. The method in which a single 
row of equations is solved simultaneously is the simpler of the two. Because of the 
nature of the equations, the method is actually a point-wise or explicit method. The 
first step in developing this method is to add Eqs. (9a) and (lOa). This resulting 
equation contains only two of the four values to be computed. When multiplied by 
one-half and written for j, it is 

(15) w +, + + (1 + VEVm)v_ =W(+l) V(1 + EV_ (2 

Another equation containing the same two unknowns can be obtained from one-half 
the difference between these equations written for j + 1. This equation is 

(!t) _ (m+1) = (+1) (in) j (in) (16) (1 + e)w('+') - vi-1,j = W(m1+l - v,'j+1 + EW(,. 

These equations can be solved simultaneously to yield, for 2 _ j < (S - 1), 

(17) v(M+1) (1 + e)A - B 
(17) Vi-l,j~1 + (1 +E)2 

(18) =~~~w~ti A + (1 + e)B 
(18) Ioj 1 + (1 + E)2 

(m+1) (in) (in) _ (m+1) (in) (in) where A = W i-1, )_1 + v(I I_l + ev ( ,j V B w= wm,j+i v'j1+ + Ewij. 
The boundary conditions specify vji_,1 = pi-, and wi,s =ft. The value of w at 

the left boundary can be obtained from Eq. (16) as 

(19) w =l (Pi-i + wZ-1i2 - vi,2 + wii)/(1 + E) 

Likewise, the value of v at the right boundary can be obtained from Eq. (15) as 

(20) v_1 s = (-fi + w_1is_i + vIis-1 + v_i.s)/(1 + e) 

Eqs. (17)-(20) provide the relations necessary for computing the flux components 
by the single-row iterative method. 

9. Double-Row Iterative Method. The double-row method utilizes the explicit 
nature of the equations of the single-row method. The values of w on the ith row are 
expressed in terms of the values of w on the (i - 1)th row and v on the ith row by 
Eqs. (18) and (19) with e = 0. These are substituted into Eqs. (15) and (16) written 
between the ith and (i + 1)th -rows. The resulting set of equations can be solved to 
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yield values of w on the (i + 1)th row and values of v on the ith row. The solution of 
these equations requires values of v at the old iterate on the (i + 1)th row and values 
of w at the new iterate on the (i - 1)th row. Values of w on the ith row can then be 
computed from the values of v at the new iterate on the ith row by Eqs. (18) and 
(19) with E = 0. Likewise, the values of v on the (i - 1)th row can be computed 
from these values of v on the ith row by Eqs. (17) and (20) with E = 0. In this man- 
ner, values of v at the old iterate are required on only every other row of points for 
each sweep across the region. This method, consequently, converges more rapidly 
than does the single-row method. 

The direct solution of these equations has been effected by separating the com- 
plete system into two bi-tridiagonal systems of equations. The general equations of 
each system are the same, and they are 

(m+1) 1 (m+ 1) + (m+1) 1 (m+1) 

(21) IEWi?1i 
- -~V ij2 +(&3 + E)v~,, -!jVVi, ?2 

= MW'1t)_2 - W1>t+j2] + v(4i ii + V+ + E[ViJ - wi1j] 

- (1 + E)Wi+l,j-2 + 3w+] + (4 + 3&)v*,tl 

(22)*_1, j-2 + w -,j} + 4V+,j- + 3V - W j-21 

In one system the j index takes on odd values, and in the other system it takes on 
even values. The boundary equations of each system are obtained from suitable 
combinations of the original equations. 

A number of solution algorithms have been developed for these systems of equa- 
tions, but all of these develop significant round-off error for grids of 20 points in each 
direction. Work is continuing in an effort to find satisfactory algorithms. 

10. Experimental Study of Convergence Rate. A number of runs were made on 
an IBM 7044 computer to study the number of iterations required for convergence. 
The boundary conditions of the test problem are 

(23a) w(z, 1) =z 

(23b) w(, y) = 0, 

(23c) v(z, 0) = 0, 

(23d) v(1, y) = -y. 

The solution to Eqs. (3) and (4) with these boundary conditions is w = z and v = 
- y for all y and z. Since all derivatives above the first are zero for this problem, the 
numerical solution will converge to the analytic solution for all grid sizes. Further- 
more, this solution is a particularly easy one to check for convergence. The initial 
guess used in all the test runs was v = w = 0 at all points in the grid. 

The first purpose of this study was to determine experimentally the most ef- 
ficient value of the iteration parameter, e. The second was to compare convergence 
rates for the double-row method and for the single-row method. The third purpose 
was to compare the effect of grid size on the number of iterations- required for con- 
vergence. 

The runs made to determine the most efficient parameter were made on a square 
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grid with ten increments on each side. Consequently, there were 200 values of the 
dependent variables to be determined. The method diverged for the two negative 
values of the parameter tested, and it converged for all positive values and for zero. 

For e = 0, the values of the dependent variables approached the correct values 
asymptotically from the initial guess of zero. For the three positive values of e 

tested, namely, 2, 1, and 2, the intermediate values of the dependeint variables, in 
some parts of the grid, increased above the correct values and then converged to 
those values by a damped oscillation. Furthermore, convergence was more rapid for 
all three of these values than for e = 0. Of the three positive values, e = 1 was the 
most efficient. At the end of 20 double iteration steps (one in the y-direction and one 
in the z-direction) no value of the dependent variables differed from the correct 
value by more than two in the fourth place. Most values were closer than this. For 
the other two values of e, some values of the dependent variables differed in the 
third place after 20 steps. 

The double-row method converged in approximately half as many iterations as 
the single-row method. For e = 1 and a 10 X 10 grid, the values obtained after ten 
double steps by the double-row method were approximately the same as those ob- 
tained after 20 double steps by the single-row method. After 20 double steps by the 
double-row method, the values were almost completely converged to six places. 
Only nine of the 200 values differed from the correct values by more than three in 
the sixth place. The largest difference was seven in the sixth place. 

The number of iterations required for convergence for a square grid is approxi- 
mately proportional to the number of points along one side of the square or, conse- 
quently, to the square root of the total number of points in the grid. For a square 
grid with 100 points on a side, 200 double steps were required to obtain the same 
extent of convergence as was obtained by 20 double steps with a 10 X 10 grid. In 
both of these test runs, the single-row method was used with e = 1. Similar results 
were obtained for the double-row method with e = 0 for square grids with 10 and 
20 points on each side. 

11. Experimental Study of Truncation Error. A study of the truncation error 
was made for flow near a unit source at the origin. The exact solution for this prob- 
lem is given by 

(24) w ZAy, + Z2) 

(25) v = y/ (y2 + Z2) 

The flux components were computed in a square region with boundaries at y = 1/2, 
z = 1/2, y = 39/2, and z = 39/2 for increment sizes of 1 1/2, and 1/4; and the re- 
sulting values were compared with the exact solution. The truncation error was 
approximately 30%, 7%, and 1.51% for the three grid sizes; this variation is in line 
with the second-order correct nature of the finite-difference analogs. The single-row 
method of solution was used, and round-off error was negligible even for the largest 
grid of 77 points per side. 

12. Comparison with Alternating-Direction-Implicit Method for Potential. The 
solution for flux components was compared with the alternating-direction-implicit 
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method of solution for the potential in a square region for equivalent boundary 
conditions. The boundary conditions in terms of potential are 

(26a) aty = O, aT/ay =0 forallz, 

(26b) at z = 0, aT/z =0 for all y, 

(26c) aty=1,T=O forz<1, 

(26d) atz = 1, T = 1 for y < 1 . 

Equivalent boundary conditions in terms of flux components are 

(27a) aty = 0, v =0 forallz, 

(27b) at z = O, w = 0 for all y, 

(27c) aty=1,w=0 forz<1, 

(27d) atz=1,v=0 fory<1, 

(27e) aty = landz= 1,v = landw =-1. 

Numerical solutions were obtained for a grid of 20 increments per side; thus, there 
were 400 points at which either the potential or the flux components were to be ob- 
tained. The initial iterates for each method were essentially equivalent. 

For the alternating-direction-implicit method the set of nine iteration parameters 
which result in most rapid convergence was used. This set of parameters is given by 
Young [2]. Convergence was obtained in two cycles of the parameters or in 18 itera- 
tions. 

No analysis has been made to obtain a set of iteration parameters for most rapid 
convergence in the solution for the flux components. Consequently, this solution was 
effected using a value of unity for the parameter. Convergence was obtained in 30 
iterations when the double-row method of solution was used. This method does not 
compare unfavorably with the alternating-direction-implicit method, and the use of 
a set of more efficient iteration parameters for the flux component method should 
decrease the amount of iterations required. 

13. Conclusion. An efficient numerical method for the determination of the flux 
components in potential flow has been developed. Two iterative methods for solving 
the resulting finite-difference equations are described. Experimental results which 
determine the most efficient value of the iteration parameter and evaluate the rela- 
tive efficiencies of the two iteration techniques are presented. These results also 
show that the number of iterations required for convergence is approximately 
proportional to the square root of the number of points in the grid. 
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