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1. Introduction. The incomplete beta function is defined as follows: 

(1) B (a, b) f ta-l(1 -t)b-ldt 

where 

O ?x?1, a>O, b>0. 

When x = 1, Bx(a, b) is known as the (complete) beta function, and it can be ex- 
pressed in terms of the gamma function by the well-known relation 

(2) B,(a, b) =r(a) (b) 
r(a + b)' 

where the gamma function, with argument s, is defined by 

co (3) rP(s) fe7tts-ldt, s > 0. 

The ratio of (1) to (2) is called the incomplete beta-function ratio; it is represented 
by the symbol Ix(a, b), thus, 

(4) Iz(a, b) Bx(a, b)/Bi(a, b) , a > 0, b > 0. 

In probability theory, Ix is often identified as a distribution function [2, p. 244] 
with mean ,u and variance a2 given by 

(5) A = a/(a + b), I 2= ab/[(a +b+ 1) (a + b)2]. 

Throughout this paper the following restrictions are imposed on the parameters 
a and b: 

I 1 } They can assume only positive half-integer values, i.e., a = k or a = k - 1/2, 
b = j or b = j - 1/2, where k and j are positive integers. 

{21 They satisfy the inequalities 

(6) 1/2 _ a < 108 1/2 ? b ? 60. 

The purpose in this paper is to describe an efficient procedure, primarily for use 
on a high-speed digital computer, for the computation of Ix(a, b) to high absolute 
accuracy, subject to constraints { 1 1 and { 2 1. 

The function Ix(a, b) is important in statistics because it can be directly related, 
or interpreted, in terms of basic probability functions such as the chi-square dis- 
tribution, the F (variance ratio) distribution, Student's t distribution, and the dis- 
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crete cumulative binomial distribution. It will be evident in the discussion given 
below that the restriction of a and b to half-integers is sufficient for expressing these 
probability distributions in terms of I.(a, b). Thus, { 1 1 is not as severe a limitation, 
from the standpoint of statistical applications, as might first be expected. 

If X12, X22 are independent random variables which follow a chi-square distri- 
bution with vi, v2 degrees of freedom, respectively, then X,2/(X12 + X22) follows a 
beta distribution where a = v1/2, b = V2/2. In [2, p. 243], it is shown that 

(7) P{X12/(X12 + X22) _ X } = Ix (a, b) , 
where P { a ? x } is read as the probability that the random variable a is less than 
or equal to x. 

The variance ratio or F distribution with vi and V2 degrees of freedom is related 
to I:, [2, p. 241-243], by 

(8) P{F _ Fo} = 1 - Ix(v2/2, v1/2) 

where 

X = V2/ (V2 + v1Fo) , F = (Xi2/vi)/ (X22/V2) 

The distribution of the ratio 

(9) t = X/(X1v)1, 

where X is a random variable following a normal distribution, and X1 is a random 
variable following an independent chi-square distribution with v degrees of free- 
dom, gives rise to the Student's t distribution, which can be expressed in terms of 
Iz, [2, p. 2381, as follows, 

(10) P{tI <_ to} = 1 - Ix(v/2, 1/2) 

where 

x= v/(v + to 2) 

In case a and b are integers, Ix is directly related to the cumulative binomial dis- 
tribution, [18, p. xvii], E(n, r, x), as follows, 

n 

(11) E(n,r,x) _ Ee(n,i,x) = I(r,n - r+ 1), 
i=r 

where 

e (n, i, x )(7 xt(-)~ 

In spite of its importance, the number of available tables of Ix is quite limited. 
The table of Karl Pearson [9] is the largest. For integer values of a and b, there exist 
the cumulative probability tables of the Harvard Computation Laboratory [18] and 
the tables of the binomial probability distribution by the National Bureau of 
Standards [19]. A table of percentage points of Ix(a, b), i.e., where x is given as a 
function of a, b and Ix, has been published by Thompson [12]. The requirements 
on the computing program, as stipulated above, greatly exceed the extent of any 
of these tabulations. 
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A number of papers [4], [5], [7], [8], [10], [11], [14]-[17] have been published set- 
ting forth algorithms and/or programs for computing I,,. Most of these papers are 
discussed to some extent in [3]. None of these papers, however, is completely ade- 
quate for our purposes. Some of them are limited to analyses for establishing the 
asymptotic behavior of Ix as a or b -+ oo. The remaining publications cited above 
run afoul of at least one of the following major difficulties in computing Ix: 

{a} A straightforward binomial expansion of the integrand in (1) and a subse- 
quent term-by-term integration results in an alternating series in powers of x which 
cannot be used for large values of a. The eventual subtraction of consecutive terms 
of nearly equal absolute values causes a prohibitive loss in significant digits. 

Ib} II is a function of three independent variables. Therefore, it is unlikely that 
one procedure or algorithm will suffice, and so it is necessary to devise a variety of 
schemes to encompass the ranges of a, b which are contemplated. 

{c} The extreme range of a, 1/2 < a < 108, introduces scaling problems in 
most procedures, because terms of the order of r(a) occur in the intermediate cal- 
culations. 

Id} The use of recurrence relations imposes the requirement of computing start- 
ing values, in which case one is confronted with the evaluation of I,(a, 1/2) for 
large a. This computation is not straightforward if efficiency and high accuracy are 
to be maintained. 

le) Closely connected to {d} is the fact that one must circumvent any pro- 
cedure which requires a summation over a elements, since this could entail the 
addition of 108 terms. Such a procedure would destroy the efficiency of the program 
and very likely the accuracy as well. 

2. An Efficient Method for Computing I.(a, b). This section contains the main 
results. Throughout the remainder of the paper a and b will be represented by k or 
k - 1/2 and j or j - 1/2, respectively. The upper bound on j is rather arbitrary 
and may be increased, with a proportional increase in computing time. It will be 
assumed throughout that I-, is to be computed to an accuracy of (logio e) decimal 
digits, where e > 0 is assigned and 

(r) _ the greatest integer in r. 

We will require the relationship 

(12) I(a, b) = 1-I(a, b) 
where 

(13) 7I,(a, b) I-,,_(b, a). 
It is obtained from (1) by the substitution u = - t. 

The analysis upon which the computation of I., is based is separated into three 
cases A, B, C. The first two are somewhat straightforward; case C is not so. The 
characterization is as follows: 

A: a or b is a positive integer not greater than 60, 
B: neither a nor b is an integer, and a < 60, 
C: b is not an integer and a > 60. 
The basic equations for A and B are summarized below. The derivations as 
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well as flow charts that specify the order in which the calculations are carried out 
and some other details which are not mentioned here are given in [3]. 

Case A. b = j, 1/2 ? a < 108 and/or a = k < 60, 1/2 < b < 60; if b =j, 
Ix can be computed from 

(14) I,(a, b) = Lai, 
i'=1 

where 

(15) ai [r(a + i -1)/r(a)r(i)Ixa(1 -x)'-. 

If a = k < 60, Ix can be computed from the relation 

(16) Ix(a, b) = 1- 7x(a, b) = 1- bi, 

where 

(17) bi [r(b + i - 1)/r(b)r(i)]x-'(1-x)b . 

The choice between (14) and (16) is made accordingly: if b = j, a k k, then use 
(14); if a = k < 60, b j, then use (16); if a = k < 60, b =j, then use (14) if 
j ? k or (16) if k < j. 

Every ai is positive and each is necessarily less than unity, since Ix < 1; never- 
theless, a scaling difficulty arises because the magnitude of the ratio of gamma func- 
tions, which appears in each ai, can exceed the largest number a computer can 
handle. The same difficulty is manifest in the bi and in the ci given in (24) below. 
This difficulty is resolved as follows: 

(1) the maximum ai, say aN, is determined by evaluating N from 

(18) N {nn {((a-1)(1-x)/x) + 1j} if kl= 1} 

This result is easily derived. One observes that, for i < N, as < ai+i; aN+1 < aN; 
for i> N, ai+i < ai. 

(2) The logarithm of aN is then computed from 

lnaN = alnx + (N - 1) ln (1 - x) + ln r(a +N - 1) - In r(a) - In r(N) 

from which aN is directly evaluated. In this way, the scaling difficulty for aN is 
resolved. 

The remaining ai can now be computed from the following recurrence relations: 

(19) ai+, =a + ix)ai, N < i ? j-1, 

(20) ai= [a+i 1] (1-x )-1ai+, 1 i < N-1, 

such that the ai with i > N are first computed and summed in increasing order of 
i by (19), then the remaining a , starting at i = N - 1, are computed and summed 
in decreasing order of i by (20). 
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Case B. a = k - 1/2 < 60, b = j - 1/2. 
In this case, Ir, is computed from 

(21) I.(a, b) = I,c(a, 1/2) + E [P(a) 1/2)]Xa(1-x) 

where 
k-1 

(22) I,(a, 1/2) = x(, 2) - [x(l - x)11/2 E [r(i)/r(i + 1/2)r(l/2)Ixi-, 

(23) I 2) = (2/7r) tan-' [x/(1- x)]"12 0 < tan-' [x/(1 -x)]12 < vr/2. 

In terms of the notation 

(24) _ -)P(a + i - 1/2) ( X) 1/2 

(25) d [ _ r+() J - 2-)( 

k-1 j-1 

(26) I (a, b) = (2/7r) tan-' [x/( -x)J/2-[x(1- X)]112 d i. + E ci. 

The di terms can obviously be computed recursively from 

(27) di,= x[2i/(2i + 1)]di, di = 2/r, 1 < i < k -2, 

and the ci are obtained from 

(28) cj+j = [(a + i- 1/2)/(i + 1/2)](1-x)ci, N <_ i _ j-2, 

(29) ci = [(i + 1/2)/(a + i - 1/2)](1 -X)-Ci+l, 1 < i < N -1 . 

The ci are summed in the same manner as the a*, i.e., by first computing the maxi- 
mum c*, CN, to resolve the scaling problem, and then summing in increasing order 
of i from N to j - 1, followed by summing in decreasing order of i from N - 1 to 1, 
where 

(30) N=min {([(a- 1)(1 -x)/x] + 1/2),j- 11. 

The above formulation for Cases A and B has the following advantages: 
(1) all terms of each sum are of like sign, 
(2) there are at most two main series to evaluate, with neither containing more 

than sixty terms, 
(3) the magnitude of the factors appearing in as and ci are kept under control 

without loss of accuracy, 
(4) the computation of the successive ai, bi, ci is efficient. 
Case C. a > 60, b = j - 1/2. 
A somewhat more detailed discussion of this case will be given, since it is the 

most difficult one. The beta ratio is again given by (21); however, (22) cannot be 
used to evaluate Ix(a, 1/2) because the summation runs to k - 1. Thus the prob- 
lem here reduces to finding an efficient method for computing Ix(a, 1/2) when a > 60. 

The method chosen to evaluate Ix(a, 1/2) in this case was that of Gaussian 
quadrature [6, p. 319]. This procedure was chosen because the truncation error, E 
[6, p. 324], could be sharply and rigorously bounded, and, moreover, the derived 
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error bound, E', showed that an amazingly low order could be used to obtain the 
desired accuracy. For example, the Gaussian quadrature of order ten would suffice 
for lOD accuracy in I,(a, 1/2). 

Lack of space prohibits giving the complete details of the proof for bounding E; 
they are, however, given in [3]. The basic steps in the proof are outlined after some 
preliminary notations and inequalities are established. 

The transformation t = 1 - u2 applied to B,(a, 1/2) gives 

(31) B.(a, 1/2) = 2 1/2 (1 -U2)a-ldU 

The symbols AM, X are introduced through the following definitions: 

(32) M' B,(a, 1/2) = [r(a)r(1/2)/r(a + 1/2)] ' (Or/a)"2, (a -) 

(33) Ix(a, 1/2; X) J 1/2 (1-U)-dU . 

In this notation, we have 

(34) Ix(a, 1/2) = Ix(a, 1/2; X) + I,_X2 (a, 1/2), 

where the last term is proportional to the area under the curve (1 - U2)a-, from 
u = X to u = 1. The purpose of this representation is to choose X such that 
I,x_2(a, 1/2) < e", where e" is another preassigned small number. 

From (33), after writing the integrand as an infinite product of exponentials, 

I,_X2 (a, 1/2; 1) < exp [(a - 1) 2 i/i) exp [-(a - )u2 ]du 

(35) 2 1 ) exp [(a - 1) (-E 2i/i 

X[ exp [-z21 dz-f e.xp [-z2] dz1, 
L (a-1)1/2 (a-1)1/2 

where z = (a - 1)"2U. However, the last integral in (35) is negligible for a > 60, 
since 

co 
f exp [_z2]dz _ (V\7r/2) exp [-x2], [1, p. 298] . 

Another application of this inequality to (35), after the last integral has been 
dropped, yields 

I1-X2(a, 1/2; 1) < M(a _1)1/2 exp [(a - )( )] 

(36) 
'Vr (1 

- 

X2)a-1 
? 

( 

M(a - 1)1/2 

The smallest value of X that satisfies (36) gives X(E"), namely, 

k(e )= [1-(Mett((a_ - )/ 7r|)1/2)1/(a-1)i1/2~[ In lEit 
(37) a - 

(a --- o o). 
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One can now deduce from (36) and (37) that the upper limit of integration (unity) 
in (31) can be replaced by X(e") = X. Moreover, if X < (1 - x)"2 then the value 
of I.(a, 1/2) is less than e", a fact that is easily concluded from (34) and (36). 

These introductory results will be useful in obtaining the bound E' (given by 
(45)) on E. The exact error term, E, associated with the use of Gaussian quad- 
rature of order m [6, p. 324] to numerically evaluate the integral of f(t) over 
[-1, 1] is givenby 

(38) E= 2 2m+l(m!) 
4 f(2m (to) ltol < 1, 

(2m + 1) [(2m)! ]' 

where f(2m) (t) means the 2mth derivative of f(t) with respect to t, which is assumed 
to exist. The integral in (33) ,which is the one we wish to evaluate, is transformed by 

U = [ - (1 -X))12)/2]t + (X + (1 - X)112)/2 

such that 

(39) Ix (a 1/2; X)= X-(1-x)1 F(u)dt = g(t)dt 

where 

(40) F(u) (1-U). 

Similarly, 

(41) I (a, ) = (1-x) f F(v)dt = f h(t)dt. 

The reason 7x is explicitly considered here is that the total integration interval in 
(33) can be halved. This is done by using (39) when X/2 < (1 - x)1/2 and by using 
(41) when X/2 > (1 - x)112. This reduces E' by a factor of 2+(2m+l), which is sig- 
nificant. The term X/2 (<1/2) is quite small for large a, e.g., if a = 104, then, 
from (37), X/2 = 0.024 for e" = 9 X 10-11. 

The 2mth derivative of g(t) and h(t) is needed in (38). Letting 

(42) 
Fu(2m) 

_ d2F(u) 
dUm 

one obtains 

(43) g 
(2m)(ti) 2 (x2- (12 X))/22m+Fu (2m) (ui) X < (1-)2 

(44) h(2m)(t2) = 2((i 2)F (2) ) - (1(-V2> 

where (1 - x)112 < ul < X and 0 < V2 < (1 -x) 12. The second factors on the 
right-hand sides of (43) and of (44) are bounded by (X/4)2m+l. The principal result 
we wish to derive is that 

(45) E ? E'- 2 [(X/2) 2+1(m!) 1 rF(a) 
M -(2m +1) [(2M)!]2J r(a -m)' 
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subject to the constraint a - 1 > 2m + 1/2. However, since a > 60 here, and m 
will turn out to be about 10, the constraint is easily satisfied. 

Let 

(46) a - 
du 

so that 

(47) Ua_i12m = F2(2m). 

It is proved in Appendix B of [3] that Ua,r satisfies the following equations: 

(48) (1 - u2)Ua2r + 2(a - r - 1)uUa,r + (2a - r)(r + 1)Ua,r = 0, 

2' tr!r(a + 1) r2i( 2 
(49) Ua,r = E: (-1)' i! (r - 2i)!r(a - r + i + 1) Ur2t(1 - U)ar+ 

for nonnegative integers r and real numbers a > r. 
The key fact which leads to a useful bound on Ua,r is that the absolute values 

of the extrema of Ua,r form a decreasing finite sequence on [0, 1] for a > r + 1/2. 
The proof of this statement is relegated to the appendix. Assuming the statement 
true, there follows from (49) that 

(50) IUa,2m(U)I ? I |Ua,2m(0)IJ 

and 

(51) IUa-1,2m(O)I = (2m)!(ma) (51) ~~~~~~m!r(a - m 

Thus (45), the desired result, is obtained by substituting (51) for (47), using this 
result in (43) or (44), and then (43) or (44) is used in (38). This completes the dis- 
cussion on the error bound. 

The explicit formulas based on the Gaussian quadrature for I.(a, 1/2) are: 

I (a) 1/2) _ -(1-x)1) 

m 

(52) X E wi{l - [(1 - x)" + (X - (1 - x)1/)(1 + yi)/2I2Ia 
i1 

+ E"/2, ifX\2< 4(1-x),2 
m 

(53) (a, 1/2) _ ((1-x) 112/M) wi[l -(1 -x) (1 + yi)2/4]a-l, 

if X2 > 4(1-x), 

where the yi and wi are the Gaussian abscissae and weights, respectively, of order 
m on [-1, 1], [1, p. 916]. The additional factor of E"/2 in (52) is accounted for by 
the fact that the last term in (34) is always nonnegative and no larger than e". 
Thus for X satisfying (36), there follows 

(54) IxI(a, 1/2) - [Ix(a, 1/2; X) + E"/2]1 < e"/2 . 

The procedure for Case C has now been essentially established. One detail re- 
mains to be discussed, namely, a description of a method for computing ln r(s). 
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3. Computation of In r(s), In r(a + c) - In r(a). The procedures as de- 
scribed above require the value of In r(s) to high accuracy. This is achieved in the 
following way. If 1/2 < s ? 100, a table look-up method is used, i.e., the values 
of In r(s) are stored for s = 1/2(1/2)100 to the full accuracy of a single-precision 
number (which is 14 digits on STRETCH). If s > 100, it would seem natural to 
use the classical asymptotic series for In r(s) [1, p. 267], which is given by 

In r(s) - (s - 1/2) In (s - 1) - (s - 1) + (1/2) In 2-,r 
(55) 1 1 1 1 1 1 

12 s-1 360 (s-1)3 1260 (s-i)5 

where the first five terms would be enough for at least 13D accuracy. In every 
case, however, in which In r(s) is needed, actually the difference 

(56) J-lInr(a + c)-ln r(a) 

occurs, where the quantity c may be either 1/2 or some expression such as N - 1, 
N - 1/2 or N + 1/2. The use of (55) to compute the two logarithm terms of 
(56) separately leads to a prohibitive loss of significant digits if a is large. This may 
be seen by observing that the dominant term in (55) for either s = a + c or s = a 
is of the order of a In a. Thus upon subtraction, an undesirable loss of digits occurs, 
e.g., if a = 104 and c = 1/2, four digits are lost. If a = 108, b = 1/2, then 
In F(108 + 1/2) - In F(108) = 17420 68075.3142 - 17420 68066.1038 = 9.2104, 
so that in this case nine digits are lost. 

This difficulty is resolved by using the following asymptotic series for J, when 
a > 100, 

In r(a+ c) - Inr(a) c_~e c - 1 n [ln(I+ c/a) inF(a+c) - 

~~~2aLc/a 
i 

- 2 -+ cmln (a + c) 
(57) 2a 

12 a a + c +360 - a3 (a + c)3 

l l1 1 
1260 -a a5 (a + c) - 

This series can be derived by the use of the standard Stirling approximation (55). 
The first expression in square brackets on the right-hand side of (57) is evaluated 
by the series 

(58) ln (1 + )+ 2Y2 y y + y + 
(58)-C+2+ o\3 5 +7 9 

where 0 = c/a and y - /(2 + 0). The series in parentheses is efficiently generated 
by the obvious recurrence relation 

(59) An - (2n + 3 y An-1 1, 2, * 

where An y2n/(2n + 3) and Ao = 1/3. Either five or ten terms of this series are 
used to attain 14D accuracy, such that if 

(1) 0 < 0 < 0.15 five terms are used, 
(2) 0.15 < 0 < 0.6 ten terms are used. 
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It is also necessary to retain the series given by (55) in order to compute 
In r(a + c) when its value is not stored and yet a < 100, e.g., if a + c = 140 and 
a = 90. 

4. Total Error in Computing Ij(a, b). The computing program is set up in such 
a way as to compute I,(a, b) with an over-all error not exceeding e. Quantities e' 
and e" are associated with e such that e' = e/4 and e" = e/2. For the evaluation 
of Ix under Case C, for example, the value of e' is used to bound E' in (45) such 
that the truncation error due to the evaluation of Ix(a, 1/2) by Gaussian quad- 
rature does not exceed E'. The value of e" is used to determine X from (37) so that 
the value of IlX2(a, 1/2; 1) is less than e". The quantity E' is also used to terminate 
the summation of the ci in (26), if ci < E'/(j - 1) for some i > N or some i < N. 
Thus the total error will not exceed E' + e" + E' = e. The details are given in [3]. 

The program as presently set up on STRETCH yields Ix(a, b) to lOD accuracy 
where 

e= 1.8 X 10-10, ' = 4.5 X 10-1, e" = 9.0 X 10-1. 

The average computing time is 2.6 milliseconds; it would be about 8 milliseconds 
per case on an IBM 7090. 

5. Appendix. This appendix contains a sketch of a proof that the absolute values 
of the extrema of Ua,, as defined by (46) do not increase as a function of u on 
[0, 1) provided a > r + 1/2. Greater detail is given in [3]. 

The result is obtained with the use of the theory of ordinary differential equa- 
tions [13, p. 99]. The theorem we employ states that if 

(60) du\PMuduy+ P(u)y = 0, 

such that 
a. p(u) and P(u) and their first derivatives are continuous on (a, b), i.e., p, 

Pe C'(a, b), 
b. [p(u)P(u)] is a nondecreasing (nonincreasing) function of u on (a, b), 
c. P(u) $ 0 on (a, b), 

then the absolute values of the extrema, lYml, of any integral of (60), y(u), form a 
nonincreasing (nondecreasing) sequence on (a, b). If the hypotheses of this theorem 
are satisfied on the half-open interval [a, b), then it is easily shown that the con- 
clusion also holds on the half-open interval, that is, the extrema on [a, b) are such 
that the corresponding values of Iy I form a nonincreasing (nondecreasing) sequence. 

Eq. (48)>is easily transformed to the form of (60) (see [13, p. 96]), so that (48) 
becomes 

(61) d [(1 2)-(a-r-1) dyi + (r + 1) (2a - r) (1-u -(a)y = 0, 

where 

(62) pP(u) (r + 1) (2a - r) (1 - 2)-(a-r) 

Conditions a, b, c above are actually satisfied on [0, 1), provided a > r + 1/2. 
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Thus, the hypotheses of the modified theorem are satisfied, the conclusion of the 
modified theorem holds and contains the result which was to be proved. 
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