
Generalized Euler and Class Numbers 

By Daniel Shanks 

1. Introduction. In [1] we discussed the Dirichlet series 

(1) La(s) = (2 $ + ) (2k + 1)i 

where (-a/(2k + 1)) is the Jacobi symbol. We defined Ca n and Da,n by 

/ 2n+1 \2n 

(2) La(2n + 1) = (ia) Va Ca,n L-a(2n) = ( -\)2V/aDa,n 

and showed that these coefficients are rational for all a = 1, 2, 3, ... and all 
n = 0, 1, 2, *. . . We also showed how to compute them. We now wish to simplify 
these coefficients and calculations. Let 

/)2n+1 C 

La(2n + 1) = 
7r -/ (2an)! (n = 0, 1,2, . .) 

LUa(2n) = (-a)\/a an (n =1, 2, 3, *.) for a > 1, and 
\2a/ (2n - 1)! 

Li(2n + 1) =! 
(2 2r) C2,n 

(n= 0, 1, 2, ..) 

(4) 2 
2/ 

2) 

L-1(2n) = 2()2 (2n- d )! (n=1,2,3, ..). 

We now assert that the Ca,n and da,n are integers. Further, they satisfy simple re- 
currences on the variable n, and this simplifies their computation. 

Consider first a short table of Ca ,n: 

n 

a 0 1 2 3 

1 1 1 5 61 
2 1 3 57 2763 
3 1 8 352 38528 
4 1 16 1280 249856 
5 2 30 3522 1066590 
6 2 46 7970 3487246 
7 1 64 15872 9493504 
8 2 96 29184 22880256 
9 2 126 49410 48649086 

10 2 158 79042 96448478 
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The first row are the Euler numbers: 

(5) C1,n = En, 

which are also called secant numbers since 
co 2n 

(6) sec w = E En W 
n (2n)V 

The first column are the class numbers; that is, there are Ca,o inequivalent classes of 
primitive binary quadratic forms 

Cu2 + 2Butv + Av2 
with 

AC-B2 = a 

the principal form of which is represented by 

u2 + av2 

Our two-dimensional array Can therefore generalizes both the Euler numbers 
and the class numbers-thus our title. 

Similarly, a short table of da,n is shown below. (The number Da, in (2) actually 
vanishes for all a, but we do not define da,o.) 

n 

a 1 2 3 4 

1 1 2 16 272 
2 1 11 361 24611 
3 2 46 3362 515086 
4 4 128 16384 4456448 
5 4 272 55744 23750912 
6 6 522 152166 93241002 
7 8 904 355688 296327464 
8 8 1408 739328 806453248 
9 12- 2160 1415232 1951153920 

10 14 3154 2529614 4300685074 

This time the first row consists of the so-called tangent numbers 

(7) di,n = Tn, 

since 
2n-1 

(8) tanw =ETn (2Wn)! 

2. Recurrences. That these numbers are all integers follows from certain recur- 
rences that they satisfy, and these, in turn, follow from known properties of the 
Euler polynomials En(x). We have [2] the generator: 

(X 2 ot tn 

(9) g +1 = 0 En(Xz)n 
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and the known Fourier expansions: 

E7()-(- 1Y'4(2n)! s2+ E2n (X) = ;2n+1 S2n+1(23 
(10) 

E2n_j(x) = (- 1)4(2n - 1)! C x 
2n2 

where [1, Eq. (18)] 

co 
sin 2ir(2k + 1)x S. (x) = Z~ 

(11) ~~~~~~~k-0 (2k + 1)8 

C8 (X) = 
c cos 27r(2k + 1)x 

k-0 (2k + 1)8 

It follows, if we put 

x = 2y and t= 2vi, 

in (9) that 

ir COS v(1 - 4y) co- ( 2n 

(12) 4 Cos v n=O r 

7r sin v (1 - 4y) 2v 

4 Cos v n=l 7 

Now, clearly, 

(13) Li (s) = S8 () and LU1 (s) = C. (O) 

so that from (12) and (4), together with (6) and (8), we find that C1,n and d1,n are 

indeed the secant and tangent numbers, respectively. 

If a is divisible by a square > 1: 

(14) a = bmi2 

with b square-free, we have [1, Eq. (23)] 

(15) La(S) = () Lb [1- (b P)P ] 

the product being taken over all odd primes pi (if any) that divide m. 

It follows, from (3), that 

(16) Ca,n = mn2{i HN 2nH1 2n+1 (-b)1 
damn = in 1[i pi [pi - , t/, 

2nm-1 m p-1] IIE2n _(b ) bn 

if b > 1, and, from (4), that 

(17) Cmn',n = ~ in2nm m 'II [s 1] L 2n+1 - )] 

dm2,n = M m TI p-] TI [p2n- i]Cd1 1, 
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if b = 1. In any case, the can and da,n are integral multiples of the Cb,n and db,n, 
respectively. 

It remains, then, to compute Cb,n and db,n for square-free b > 1. We showed, in 
[1], that for such b we have 

Lb(2n + 1) = b E kS2n+l(Yk) 

L-b(2n) = bE EkC2n(Yk) 

where in the linear combinations on the right the ek are Jacobi symbols, and the yk 
are rational numbers, both dependent upon b. In all such cases, we therefore have 
from (12) the generators: 

E k cos bw(1 - 4Yk) co 
k = W g2n Cb,n 

(19) cos bw n W (2n)! 
Ek sin bw(1 - 4Yk) 0 

k =cb2n-1 =,n 

cos bw n=1 (2n - 1)! 

where we have put v = bw. Equating powers of w gives the recurrences: 

(01)n ( ) Ek [b(1 - 4Yk)]2n = E Cb,ni(-b 

(20) k ni_ ~ 2- i 
( 1)iE ZEk[b(1 - 4Yk)]2nl = E db,ni(-b2)ti (2n ,1 

where the rightmost symbols are the binomial coefficients. Let us abbreviate 

E Cb,n-i(-b ) (2 = ebn 
(21) i __ ()= 

, db,n-i(-b ) (2f ) = ODb,n, 

and note that the coefficient of Cb,n (db,n) in these linear combinations is always 1. 
Inserting now the appropriate values of Ek and yk from [1], we have the recur- 

rences 

C1b,n = (-1)n ( ()[b -4k]2n if b 3 (mod4), 

(22) Cb,n(n 1)ny2 (21b [)[b - (2k + 1)]2n if b 3 3 (mod 4), 

=), (~)1 (K[b - 4k]2n-1 if b 1 (mod 4), 

5)b,n = (-1)n- [b - (2k + 1)]2n)1 if b _ 1 (mod 4) 
examp, lt us l2k+s<b t 2k + 1 ( 

As examples, let us list: 
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e2,n = (-)n 
e3,n = (_1)n, 

5,n= ()n[42n + 22n] 

e6,n = (1)n[52n + 12n] 

e7,n = (-1)n[32n + 12n - 52n] 

-lO,n = 1)n[92n - 72n + 32n + 12n] 

(23) D2,n = (_1)n-1 

5)3,n = 1-)n-12'n-1 

5)5,n = 1)n-1[12n-1 + 32n-1] 

3D6,n = (-1)n-1[52n-1 + 12n-1], 

57,n = 1)n -1[62n-1 + 42n-1 - 22n-J] 

5)10,n ( 1)n-1[92n-1 + 72n-1 - 32n-1 + 12n-1] 

By such relatively simple recurrences we express Cb,n (db,n) as a linear combina- 
tion of the Cb,m (db,m) with m < n, and since Cb,o and db,l are clearly integers, so 
are all of these numbers integers. 

Further, for b = 1, we have the well-known recurrences for the secant and 
tangent numbers, cf. [3]: 

(24) Cl ,n = 0, 51n = (_)n-1 (n ? 1) 

and our Eqs. (22) are merely the appropriate generalization of these. 

3. Comments. We have shown that the Ca,n and ba,n are integers, and we have 
shown how they may be computed. We do not wish here to develop an elaborate 
theory of these numbers, and will merely close with a few brief remarks. 

A. Some authors have used a,notation in which the secant and tangent number 
coalesce into a single series, thus: 

(25) C1,n = En = A 2n di,n = Tn = A2n_1. 

We note, from (23), that a similar joining of 

C2,n and d2,n 

or 
C6,n and d6,n 

is possible, because their recurrences fit together smoothly. But, in general, say, 
a = 32 5, 7, etc., the Ca,n and da,n obey quite different laws, and therefore it does 
not seem desirable to attempt a joining of the complete Ca,n and da,n arrays. 

B. It is clear that properties of these numbers (mod m) may be attacked fairly 
generally through their recurrences (22). In a less systematic way such studies. 
have been initiated by Glaisher [4]. 

C. Finally, we note that recently D. J. Newman and W. Weissblum [5] have 
given a combinatorial interpretation of the An in 

(6 tn 

(26) sect+tant= EAn A , 

where the notation here agrees with (25). They assert that An is the number of 
"up-down" permutations of 1, 2, * * *, n. Thus A4 = C1,2 = 5 because 
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2143, 3142, 3241, 4132, and 4231 

are the five ways in which 1234 may be permuted in which successive differences 
are alternatingly positive and negative. Presumably, reversals are not counted, 
e.g., 3412. This raises the question whether all of the can and da n may not have 
some combinatorial interpretation. 

David Taylor Model Basin 
Washington, D. C. 20007 
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