The Number of Prime Divisors
of Certain Mersenne Numbers*

By John R. Ehrman

It has been conjectured by Gillies [1] that if M, = 2? — 1 is the Mersenne
number for some prime p, and if A < B £ Y M, as B/A and M, — «, then the
rumber of prime divisors of M, in the interval [4, B] is Poisson distributed, with
mean

m ~ log (log B/log A) if A= 2p,or

m ~ log (log B/log 2p) if A < 2p.

1

It is the purpose of this paper to describe two tests of a modified form of this
conjecture.

It is known that all divisors of M, must be of the form 2kp + 1 and simul-
taneously of the form 8%’ & 1, where k£ and &’ are arbitrary integers. Also, the
prime divisors of M, may be of one of the forms 4n + 1 or 4n + 3. Thus if p =
4n + 1, the smallest possible divisor ¢ is 6p + 1, and if p = 4n + 3, the smallest
possible divisor is ¢ = 2p 4 1. Thus Eq. (1) is modified slightly: the expected
number of prime divisors of M, in the interval [@, B], where Q is not less than the
smallest possible divisor of M,, @ < B < +M,, and as B/Q, M, — «, is Poisson
distributed with mean

() meq ~ log (log B/log Q) .

Since the observed results in a group are drawn from two populations corre-
sponding to the two forms of p, there is a question as to what value m should be
used for the estimated mean number of divisors. It would be possible, for example,
to separate the two populations and test the samples independently. It was felt,
however, that a fuller test of the applicability of the conjecture (2) could be made
by testing all primes with no distinction as to form.

In calculating an estimate of the mean m to be used in statistical tests, it was
noted that

(a) the sum of two independent random variables from Poisson distributions
with parameters m; and m, has a Poisson distribution with parameter (m; + m2);

(b) if w(x; k, t) is the number of primes p = ¢ (mod k) which do not exceed z,
and if (k, t) = 1, then [2]

(x5 k, 8) ~ 7 (x)/o(K) .
This means that one may expect nearly equal numbers of primes of the forms
4n + 1 and 4n + 3 in a large sample of primes; this is the justification for not dis-
tinguishing the primes as to form.
Thus an unbiased asymptotic estimate of the mean may be taken to be
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3) m = § (Mapr1 + Mepy1) .

Thus, for example, in the interval 100000 < p < 102500, it is found that mep41 =
0.5645 and mepy1 = 0.4784, so that the Mersenne number corresponding to a prime
drawn at random in the interval would be expected to have an average of 0.52
divisors less than 23,

The tests performed on the results given in [3] were a test of the mean number
of divisors, and a test of their Poisson distribution. Because the change in p over
each of the intervals tested is relatively small, the value of p used in computing m
from Eq. (3) was simply the midpoint of the interval in p from which the sample
was drawn.

A program was written for an IBM System/360 (Model 50) computer which
tested for divisors of M, using the congruence

2P=1 (modg).

The test was coded [4] in the following manner:

1. In binary form, p = >, a2 and 2» = []"_, (229,

2. Let R; = 2*" (mod ¢) = R%, (mod ¢), and S; = [J¢_, (R:)*: (mod g).

Thus S; need be computed from S;_; only if a; = 1.

3. If S, = 1, q|M,.

4. The first five steps of the calculation may be done in one step by taking the
five low-order bits of p to compute B, = 27 (med 32,

Divisors ¢ < 2% were computed for 100000 < p < 300000. To compare the
observed distribution of primes with that predicted by Egs. (2) and (3), the values
of p were grouped so that p fell into one of the 80 groups defined by

100000 + 2500 < p < 102500 + 2500z ,

¢ = 0(1)79. In each group, the total number of primes observed and the number of
primes with j divisors were counted. These results are tabulated in Table I. For
each p which has one or more divisors ¢ < 2%, the value of p and the associated
values of k = (¢ — 1)/2p are tabulated in [3].

To test the estimate of m, N samples of p were observed between limits L and
U, where N = #(U) — w(L), and L < p < U. The total number of divisors T
was counted, and the sample mean Z = T/N was computed. The sample variance
was found from

§—lfbtwﬁ=ii# - @)’
~ N =77 N = " ’

where D; is the number of divisors observed for the jth prime in the sample, and
K, is the number of Mersenne numbers in the interval with » divisors. (Because
of the method used, no tests were made for multiple factors.) As the number of ob-
servations becomes large, it is expected that the variable

t= O — )" @@ — m)/s

should become normally distributed (0, 1). The observed values of N, D, and ¢ for
each group are given in Table I. The expected number of divisors E is simply the
product of m and N.
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To test the hypothesis of Poisson distribution, a chi-squared test was performed
on the observed distribution of divisors. The counts were put in three classes: no
divisors, one divisor, and two or more divisors; the numbers of primes with ¢
divisors are listed in the columns K; for ¢ = 0(1)5. (See also reference [5].) The
computed values of chi-squared for each of the eighty groups are given in Table I.
The values of chi-squared were computed from the formula

x' = (Ne™ — Ko)* + (Nme™ — K,)?
+ Nl —e™—me™ — Ky, — Ks — Ks — K5)?,

and are given in Table I in the column headed x2.

To test for the possibility that distinguishing between primes of the form
4n 4+ 1 and 4n 4+ 3 might lead to significantly different results, ¢ and x? were also
computed for m = (1/N)[Nimepr1 + (N — Ni)Mgpyi1], where N1 is the number of
primes p = 1 (mod 4) observed in the interval. The average values of ¢ and x2
obtained were slightly larger than those given at the end of Table I.

A comparison of the expected and observed distributions of ¢ and x? is given in
Table II. The agreement is seen to be satisfactory.

TasLe 11

Observed distribution of t and chi-squared.
In both cases, the expected number of values in the ranges indicated is 10.

Upper Limat Number | Upper Limit on | Number
ont of Values | Chi-Squared of Values
—1.15 5 0.266 10
— .674 11 0.576 12
— .319 7 0.940 9
0.0 10 1.386 10
+ .319 13 1.962 8
+ .674 8 2.772 8
+1.15 12 4.158 14
© 14 © 9
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