
Note on Random Permutations 

By Guy de Balbine 

The purpose of this note is to present a fast and simple method to generate 
random permutations of N objects, say of the numbers 1, 2, * * *, N. Despite its 
simplicity this method by pairwise exchanges seems to have been overlooked in the 
past because references to more complicated and less efficient algorithms are still 
being made. To illustrate this fact, we shall first quote a method described in Birger 
Jansson's Random Number Generators [1]: 

For each permutation of 1, 2, * *, N, let ak be the number of integers following 
k that are less than k, for k = 1, 2, *..., N. For instance, when N = 5, the permu- 
tation 1 4 2 5 3 gives 

k 1 2 3 4 5 
ak 0 0 0 2 1 

Any integer n such that 0 < n ? N! - 1 has a unique factorial representation 

n = a1O! + a21! + * * + aN(N-1)! 

if each ai is an integer between 0 and i - 1. Clearly a, is always 0 so that equiva- 
lently 

n = a2l! + + aN(N-1)! 

To each integer n there corresponds a unique permutation, thus n can be called 
its serial number. For the permutation 1 4 2 5 3 

n = 2.3! + 1.4! = 36 . 

Conversely, the permutation can be obtained from the serial number by suc- 
cessive division by (N - 1)!, (N - 2)!, * * *, 1!, the quotients being the a's and 
the remainder of each division becoming the next dividend 

36= 1.4!+12, a5= 1, 

12 = 2.3! + 0, a4= 2, 

0=0.2!+ 0, a3=O, 

0 = 0.1!+ 0, a2 = 0 

The permutation is then synthesized as 

1, 1 2, 1 2 3, 1 4 2 3, 1 4 2 5 3. 

The drawbacks inherent to this method are: 
(i) The difficulty of generating a random integer in the range [0, N! - 1]. Even 

for moderate N, say N = 20, multiple-precision arithmetic is necessary. 
(ii) The number of operations required to build the permutation from the a's is 
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approximately N2/4, as the decision to place the kth object is based upon (k - 1)/2 
comparisons on the average. 

Pairwise exchange method. We shall now describe a method for which the num- 
ber of operations is O(N). A random permutation is obtained from any arbitrary 
one by exchanging the first object with itself or any other object on the right with 
equal probability, then by exchanging the second object with itself or any other 
one on the right with equal probability . . . until the (N - 1)st object has been 
exchanged. The probability that a given object be in the kth position in the gen- 
erated permutation is the probability that the k - 1 first steps leave it free whereas 
the kth one brings it in the kth position, where it clearly remains afterwards. That 
probability is 

N-1 X N - 2 N -k + 1 1 1 
p N x N-1 IX.. x N- k + 2 J N J= 

The algorithm proceeds as follows: assume that we can draw N - 1 numbers 
from a random number generator such that 0 < _ < 1. 
They are scaled to yield N - 1 integers v7i 

.4i = [ti(N + 1 -i)], i = 1, 2, .. * *, N-1, 

where [x] denotes the greatest integer in x. Clearly 

0?<i<N-i, i= 1,2, .*,N- 1. 

Then, at the kth step, the kth current object is exchanged with the (k + nk)th one, 
for k = 1, 2, ...,N-1. 

At most N - 1 exchanges are necessary. Actually, the kth step requires no 
exchange at all if 'qk = 0, which occurs with probability 1/(N + 1 -k). 

The expected value of the number of exchanges is therefore 

N-1 

p = N-1- jEN +1-i 

which is approximately N - log N for large N. 
The advantages of this method are 
(i) It is fast; at worst N - 1 exchanges are necessary. 
(ii) It only deals with numbers in the range [0, N] and is therefore applicable 

to the generation of large permutations. 
(iii) Random integers in the range [0, N - 1] are easily produced and even a 

lack of randomness in the least significant digits of the {i's would have no practical 
influence. 

Example. Tofind a random permutation of 5 numbers starting from 1 2 3 4 5 

i tX rz Permutation 
1 0.32305 1 2 1 3 4 5 
2 0.80612 3 2 5 3 4 1 
3 0.50989 1 2 5 4 3 1 
4 0.18278 0 2 5 4 3 1 
5 0.46436 0 2 5 4 3 1 

One might try to simplify this method by avoiding the variable scaling but the 
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permutations obtained are no longer random. Consider the algorithm where at the 
kth step, the kth object is exchanged with any one of the N objects. This trans- 
formation when applied N times produces NN equiprobable mappings of a par- 
ticular permutation into the set of all permutations of N objects. But there are 
only N! members in the set and NN is not divisible by N! if N > 2, so that each 
of the N! permutations is not equiprobable. 

The pairwise exchange method is equally well suited for the generation of per- 
mutations, combinations, or arrangements. A random combination or arrangement 
of p objects among N is obtained by performing only p exchanges, the result being 
the p first objects so generated. 
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On Finding the Disc of Minimum Radius 
Containing a Given Set of Points* 

By L. J. Bass and S. R. Schubert 

Recently many combinatorial problems have been found to be amenable to com- 
puter solution. This report presents a description of one such problem and its 
solution. 

Let E be a given set of points of finite cardinality in the plane 612. The problem 
is to determine the disc Dmin of minimum radius such that E C Dmin. 

This is a nontrivial problem. The centroid of E gives no information at all. A 
complete analytic solution appears extremely difficult, since probably new concepts 
are required. Moreover, any essentially exhaustive procedure formulated for ma- 
chine solution is only feasible when E has very small cardinality. However, consid- 
eration of a few simple geometrical theorems quickly places the problem in a much 
more tractable setting. 

Definition. Let E C 612 be given as above. The convex hull of the extreme points 
of E is that convex polygon P such that E C P and the vertices of P are points of 
E. These vertices are called the extreme points of E. 

THEOREM 1. The extreme points of E completely determine Dmin. 
Proof. This is clear since E C P C Dmin. 
THEOREM 2. There are at least two extreme points of E which are on the boundary 

of Dmin. Moreover, if there are exactly two points, then these are, in fact, the endpoints 
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