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TABLE 2 

Solution of One System Equations 

Step 

Array 0 1 2 3 

1 A I bi P=A+B I c1=bl+b2 Solve Py, = cl xi = .5(yl + y2) 
2 B1 Wb2 Q = P-2B C2=c1-2b2 SolveQy2 = C2 X2 = Xl-y2 
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A Note on the Effect of 
Conditionally Stable Correctors 

By Fred T. Krogh 

We say a corrector of the form 
k-1 k-1 

(1) tYn? = E Aiyi + h ai ay'-i 

is conditionally stable if the polynomial 
k-1 

(2) p(Z) = Zk - E AiZk--i 
i=o 

has all of its roots in the unit disk, roots of unit magnitude are simple, and there is 
at least one root of unit magnitude besides the root z = 1 (which must be a root 
since it is assumed that Eq. (1) is satisfied if y is a constant). In [1], Stetter ob- 
tains the remarkable result that a predictor-corrector algorithm using Simpson's 
rule (a conditionally stable corrector) will be relatively stable* for sufficiently small 
h provided the predictor is chosen judiciously and the corrector is only applied 
once. However, his result applies only to the integration of a single differential 
equation. It is the purpose of this note to point out that no result of this type can 

Received October 19, 1966. Revised April 24, 1967. 
* From the bewildering array of words in the current literature which describe stability, those 

used here seem to the author to be most descriptive. Different words are used in [1]. Several 
definitions of "relatively stable" are given below. In practice they are essentially equivalent. 
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be obtained if one considers systems of differential equations. (This is contrary to 
that stated just above Eq. (2.25) in [2]. The analysis there is not based on the 
linear equation y' = Xy as it is in [1] and here.) 

The stability characteristics of an algorithm for solving systems of differential 
equations can be obtained by examining its stability for single equations of the form 

(3) YI = XY 
where X is a complex constant (see references [3] and [4]). The stability of the 
algorithm in solving (3) depends in turn on the behavior of the roots to the charac- 
teristic equation 

(4) p(s, z)= 0 
where p is a polynomial in s and z, and s = hX. It is well known, see for example 
Chapter I of [5], that except for branch points the roots ri, r2, * of Eq. (4) are 
analytic functions of s. It is easy to show that the roots of p(O, z) coincide with 
those of p(z). Assuming the corrector is conditionally stable, we label the roots of p 
such that ri(O) = 1 and Jr2(0)1 = 1. 

If p(s, z) is a polynomial in zi (j an integer greater than one), then the method 
is only using every jth point. The error propagation of such a method should be 
studied by replacing s with s/j and zi with z in Eq. (4). We assume that the charac- 
teristic equation has been so formulated. 

THEOREM. If p(s, z) is irreducible, then for sufficiently small e (>0), there is a 
number s with modulus e such that Ir2(s)l > Iri(s.)?. 

Proof. Since roots of unit magnitude are simple at s = 0, it follows that 4(s) - 

r2(s)/ri(s) is analytic in a neighborhood of the origin. A simple application of the 
maximum principle, see for example [6, p. 165], to +(s) reveals that for e sufficiently 
small there is a number s with modulus e such that Ir2(s)l > ri (s) , provided 
ri(s) - cr2(s), where c is a constant. 

If ri(s) _ cr2(s),t p(s, z) = 0 and p(s, cz) = 0 both have z = ri(s) as a root in 
a neighborhood of the origin. Since p is irreducible, this implies the two equations 
define the same algebraic function (cf. [5]). This in turn implies that c is a jth root 
of one (j > 1) and p(s, z) is a polynomial in zi. Thus ri(s) 0 cr2(s) and the theorem 
is proved. 

A method with a p(s, z) which is not irreducible is of dubious value. From such 
a method could be derived a simpler method with the same principal root, ri(s), 
and without some of the extraneous roots. 

Ralston [7] defines a method to be relatively stable at s provided Iri(s)! < 

Inr(s) 1, i = 2, 3, *.. , and in the case of equality that ri be simple. Stetter simply 
requires Iri(s) I < Iri(s)1. Crane and Klopfenstein [3], and Krogh [4] use Ralston's 
definition with es substituted for ri(s). With either of the first two definitions, the 
above theorem shows that a method which uses a conditionally stable corrector is 
not relatively stable for arbitrarily small values of fsl. The same result for the last 
definition is obtained from the first paragraph of the proof with +(s) = r2(s)/e9. 

TRW Systems 
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t The author wishes to thank the referee for pointing out the necessity of considering this 
possibility. 
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Midpoint Quadrature Formulas 

By Seymour Haber 

A family of quadrature formulas for the interval (0, 1) can be constructed in 
the following manner: For any positive integer n, we partition (0, 1) into subinter- 
vals I,, I2, * * *, In (I, being the leftmost, I2 adjacent to it, etc.) of lengths a,, a2, 
** , an, respectively. Now let xk be the midpoint of Ik, for k = 1, * n, and take 

(1) aif(xi) + ... + anf(xn) 

as the approximation to f 1 f(x)dx. The simplest of these rules is the "Euler's" or 
"midpoint" rule 

ff(x)dx =f() . 

We will refer to the members of this family as "midpoint quadrature formulas" and 
determine their properties. We first find their "degrees of precision"-that is, for 
any formula, the highest integer p such that the formula is exact for all polynomials 
of degree p or lower. 

THEOREM 1. The degree of precision of a midpoint quadrature formula is 1. 
Proof. The formula is exact for constants, since necessarily a1 + a2 + * + an 

= 1. To check the exactness of the formula for f(x) = x, we first note that 

(2) xl= -a,X2= a,+ 222 I..2*xn= a,+ *X+anl+ 2'. (2) 
a~~2 a22 

So for the integral j1 x dx, (1) gives us 

a,(ai/2) + a2(ai + a2/2) + ... + an(a1 + + an-, + an/2). 

Received December 5, 1966. 


	Cit r153_c161: 


