On Difference Approximations
with Wrong Boundary Values*

By Heinz-Otto Kreiss and Einar Lundqvist

1. Introduction. Consider the differential equation

1.1) du/dt = du/dox
in the quarter space x = 0, ¢ > 0. (1.1) has a unique solution if initial values
(1.2) u(z, 0) = f(z), 0=2z< =,

are given. We want to solve this problem by difference approximation. Therefore,
we introduce a time-step &k > 0, a mesh-width 4 = 1/N, N a natural number, and
gridpoints z, by z, = vh, » = 0, &1, 2, - - -. As usual, we assume that k/h = A
where A > 0 is a constant. Denoting by v,(t) = v(z,, {) a function defined for all
z==zx,andt =t, = mk, m =0,1,2, --- we approximate (1.1), (1.2) by

w3) nlt+ ) = Qult),
0(0) = f@).

Here @ is a difference operator which can be written under the form

y=0,1,2---.

(1.4) Q=Y o, B =g@+h),

j=—p
where a; are constants.
In contrast to the continuous problem v,(f) is not uniquely determined by (1.3),

because we cannot compute vo(t + k) without v_,(t), v_ps1(f), - - -, v-1(f). We there-
fore introduce extra boundary conditions

(1.5a) v =gut), w=-1,-2-3 -, -p,

where ¢,(f) are any uniformly bounded functions, i.e.,

(1.5b) lg.(0)| = M, M constant.

Assume that the approximation (1.3) is stable. What can we say about the con-
vergence of v,(f) towards u(z, t), as h — 0?

For two special cases this question has been answered in an interesting paper
by S. Parter [1]. He has shown that the estimates of Theorem 1 hold for the Lax-
Wendroff scheme and the Friedrichs scheme.

We want to generalize this result to general dissipative approximations, using a
completely different technique. Furthermore, we shall give a fairly complete classi-
fication of all stable difference approximations according to the influence which the
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2 H.-O. KREISS AND EINAR LUNDQVIST

boundary conditions (1.5a) have on the solutions. To state our main results we need
some definitions:
Definition 1. Let

q .
(1.6) QE) = 2 ae™
J=—Dp
be the Fourier transform of the difference operator €. Then we call the approxima-
tion dissipative if

(1.7 Q)| =1 —olg for—r<t=<.

Here 6 > 0is a constant and s > 0 a natural number.
Definition 2. We say that (1.3) is accurate of order m if

Q) = e™M + 0@™), N =k/h.

It is well known (see for example [2]) that Definition 2 is equivalent to the usual
definition of the order of accuracy.

Definition 3. We say that g, = g(z,) and ¢, = ¢(x,) are grid functions if they
are defined forallz = z,, » = 0, &1, &2, --- and

+ +o

Llpl’<eo, Xl <.

Vy=—o =—00

Furthermore, we define scalar products and norms by

(9, 0r= g g ”g”r2 = (g, g)r = 1::21‘ ’gvl2h .

If a function f, is only defined for v = [, then we always extend the definition
toally, —» < v < », by assuming f, = 0 forv < L.

We can now formulate our main result:

THEOREM 1. Assume that the initial values f(x) € C™(0, «)** and vanish for
z > R, R some constant. Let the difference approximation be dissipative, accurate of
order m, and assume that (1.5b) holds for the extra boundary conditions. Then there are
constants K; > 0, © = 1, 2, and o > 0 such that we can write the solution v,(t) of
the difference equation under the form

Z).,(t) = Uv(l)(t) + v»(z)(t> I} vV = 0) 1} 2; )
and we have the estimates:

”v"(l) (t) - u(xl'y t)”0 = tthm )

(1.8)
[0, @) = K2<M -+ max |f(x)|>e‘"“.

Therefore, the influence of the extra boundary conditions is present in an interval of
length ~ const h|log h|.
We want to formulate a more general result. For that reason we need
Definition 4. Let £ and « be real, and consider the Fourier transform Q for com-

** Cla, b) is the class of all functions which for @ < z < b are I times continuously differ-
entiable.
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plex arguments. The difference operator @ is called contractive if for all ¢ with
|§] £ = and some o > 0

(1.9) QB =1Q¢+ ) =1, [QE+ia)| S eb.

Here 8 > 0 is a constant.

We are going to show:

TrEOREM 2. If Q s dissipative and accurate of order (at least) one, then Q is con-
tractive.

However, the converse is not true. If, for example, Q(¢) = ¢, then Q(¢) is con-
tractive but not dissipative.

The more general result is stated in

TuEoREM 3. Replace in Theorem 1 the condition dissipative by contractive. Then
the estimate (1.8) s still true.

We can write Q(¢ + 7e) under the form

Qt + i) = Q) + ai(®) + 0(e?) .
Therefore, a function ¢(¢) exists such that:

[Q¢ + ia)| = |Q®)]-er=® + 0(a?)  forQ(t) =0,

and the condition (1.9) certainly holds if either [Q(¢)] < 1 or [Q(¢)] = 1 and
¢(¢) < 0. This suggests the following definition
Definition 5. Q(£) is strictly noncontractive if |Q(£)] < 1 and for some £

(1.10) |Q(60 + 7)| = exp (Ne(Eo)a) 4+ O(e?)  withe(ko) > 0.

The following theorem shows that Theorem 3 is almost the best possible result.

TraeoreMm 4. Consider the difference approximation (1.3) with tnitial values
f@) = 0 and assume that it is strictly noncontractive. Then we can find boundary
Sfunctions g,(t) such that:

Yo(t) = exp (ko + ipt/k)u(,, 1), € = Q(&o),
where u(x, t) converges to the solution of the continuous problem:
(1.11) du/ot = —c(o)ou/dx u(z,0) =0, u(0,8) = 1.

Therefore, the difference approximation does not converge to the solution u(z, t) = 0
of the continuous problem (1.1), (1.2).

For simplicity we have only formulated the theorems for explicit difference ap-
proximations. However, our results hold also for implicit equations. Using the work
of G. Strang [3], we get:

TrareorEM 5. Consider an implicit difference approximation

(1.12) Qu,(t + k) = Qw.(?) ,
where
(1.13) Q= g bE, Q= :Z; a,E .

Assume that Q:(¢) < 0 for all £ and that the index condition
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(1.14) /_w darg (™) =0

is fulfilled. Then the above theorems hold also for implicit difference approxima-

tions (1.12). (Q(®) = Q2(8)/Q1(¥).)

It is not difficult to generalize the results to equations
du/dt = d(z, t) du/ozx , d0,t) =2do >0,

with variable coefficients, because all arguments used depend on Ls-estimates only.
We get using a theorem of P. D. Lax and L. Nirenberg [7]:

TaeoreM 6. All results hold for equations with variable coefficients, provided the
coefficients of the differential equation and of the difference approximation belong to C*
(dessipative, contractive, etc., are defined in the usual way, i.e., pointwise).

There are essentially two different types of difference approximations which
are used in practice: dissipative methods and energy conserving methods. In the
last chapter we investigate what properties the energy-conserving methods must
have to be contractive.

The reason why we are interested in this problem comes from the following
considerations: In applications one often has to determine solutions of hyperbolic
differential equations which are only piecewise smooth, i.e., the solutions have con-
tact discontinuities, travelling along the characteristics, and—for nonlinear equa-
tions— they have shocks. Thus we get in the z, t-plane discontinuity-lines which
we can consider as internal boundaries. Now one often uses difference approxima-
tions without doing anything special along these lines of discontinuity. We can view
the computation in the following way: When using the difference approximation
along a discontinuity-line we in general get completely wrong values. We can con-
sider these values as boundary values for the computation of the solution in those
regions where the solution of the differential equation is smooth.

The question then is: What is the influence of the “wrong boundary values” on
the solution? In a forthcoming paper by M. Apelkranz [5] precise estimates are
given for contact discontinuities by a refinement of our technique. In another paper
we shall consider conservation laws du/dt = 9f(u)/dx and investigate convergence
properties of difference approximations.

2. Contractive Difference Approximations. We start this paragraph by proving
Theorem 2, i.e., if @ is dissipative and accurate of order (at least) one, then @ is
contractive. By (1.6)

q
(2.1) Q¢ +1da) = 2 ajexp (G + ia))
j=—p
is an analytic function of 2 = ¢ + ia. Therefore, there is a constant K such that
for all sufficiently small « > 0:

Q¢ + i) = [Q®)] + Ka .
If Q is dissipative, then the last inequality and (1.7) imply
|Q¢ + 7a)| < 1 — 3[¢]* + Ka.
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Therefore, the theorem is proved if we can find real numbers & > 0 and a; > 0
such that for all « with 0 < @ = o and all £ with |§] = & the inequality

2.2) [QGt +10)] =1 — 3 an
holds. By Definition 2 and (2.1) we can write Q(¢ + 7a) under the form (R (¢ + ia)
being analytic functions of z = ¢ 4 ia):
Q¢ + ia) = e+ (£ + ia)2Ry(E + 1a)
= e 4 E2Ry(§) + e®Me — 1) + (¢ + 1)’ Ra(§ + ia)

— ERi(8) = Q(®) — M + O(af + o) .

Now Q(¥) = 1 + £R,(¢) and by (1.7) |Q(¢)| £ 1. Therefore
[Q + i) S 1 — Na+ O(at + o)

and (2.2) follows immediately.

We want to reduce the proof of Theorem 3 to the case where the initial values
f(z) = 0. Let us assume that f(z) € C™*(0, «). By extrapolation we can define
f(@) for —ph < z < 0in such a way that f(z) € C™'(—ph, «) and max_u <. |[f(z)]
< 2 maxe<, |f(x)]. Then it is well known that (1.1), (1.2) has the solution

2.3) u@,t) =f@+t) EC"MN(—ph 22 < »0,t=0).
We consider now the difference approximation
1) _ (1)
(2.4) Uy (t‘i“k)—QZb (t)} V=O,1,2,"‘,

Uv(l)(O) = f(xl') ’

with boundary conditions
(2.5) 0P = u(xy t) 1 zu = ph; p=-=1,-=2---,_p.

Now, G. Strang [3] (see also [4, Lemma 2 and Theorem 2]) has shown:
Lemma 1. IF |Q®)] = 1, then (2.4), (2.5) is stable with stability constant 1, i.e.,
if we consider the solution w,(t) of

(2.6) w"(t + k) = le'(t) )

w,(0) = y(z,),
with homogeneous boundary conditions

y=0’1’2’...,

(27) wu(t) =0, p=—-1,-2 -+, —p,
then
(2.8) [lw®Ilo = [|w(0)]]o-

If Q is contractive, then by definition |@(¢)| < 1. Therefore, we get from Lemma
1 in the usual way the first estimate (1.8), i.e.:

2.9 [, D) — ulz,, )0 £ Kith™.
We consider now the difference approximation
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22+ k) = @20,

(2.10) »y=0,1,2---,
2,(0) =0,

with boundary conditions

(2.11) PO = gu(t) —ul@n b, w=-1,-2-

By (2.3) we have

(2.12) PO = M + max [f(z)].

It is obvious that the solution v(z, t) of (1.3), (1.4) can be written in the form
v(z, t) = 0D (x, 1) + v (x, 1) .

Therefore, we have proved Theorem 3 (and therefore, by Theorem 2, also Theorem
1), if we can show that for »®(z, ¢) the second estimate (1.8) holds.
Let y™(z,) = y, denote the functions (n = 0 natural number).
(n) = = oo
2.13) Yy =0 2f0rv 0,1,2, ,
=32@) forv=—1,—-2,---, —pand¢ =nk.

Define functions w, ™ (t) by
@) =0 fort=0,k -, (n — 1)k,

(2.14) 0t + k) = Qv (@),
wy(n) (nk) = ny(n—l) ,

with boundary conditions

»=0,1,2, -+, ¢ = nk,

(2.15) w, ™M) =0 fory = —1,-2, ---, —p.

Then we can write the solution of (2.10), (2.11) for » = 0 in the form:
k=1

(2.16) 220 = X &), »=01,2---.

J=

We want to estimate the w,(f). By assumption, @ is contractive. Let «, 8 be
positive numbers for which (1.9) holds. Introducing new variables &, (t) by

w, ™M (f) = exp (—av — B(t/k — 1))@, (1)
into (2.14), we get
av(”)(t + k) = Ql‘s(n)(t) )
& (nk) = Q"""

with boundary conditions

(2.17) »=0,1,2,---,

C,“ (n) =

’ p=-=1,-=2---, —p.

The Fourier transform of @, has the form @, = ¢#Q(¢ + ia), and therefore by
(1.9):

(2.18) Qi = 1.
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Furthermore, we get from (2.13) that Qy,** = 0 for v Z p. Therefore, there exists
a constant K such that

2.19) 15 @R S K™ 3 O]

H=—p

(2.18) says that we can apply Lemma 1, and (2.19) gives us

601 S Ko™ 3 0,0, 1z k.

w=—p
Therefore,

O] = a0 )

< e—-—av—ﬁ( t/k—n)h—1/2H&,’(n) (t) ” 0

—1 1/2
é Kea(p—l)( Z va<2) (t)|2> .e—av—-ﬁ( t/k—n)

u=—p

< K’e"“"”(M + 2max | f(x)!)e“"""'g Wh=m = > k.

(2.20)

Now (2.16) and (2.20) imply the second estimate (1.8) without difficulty. There-
fore, Theorem 3 and Theorem 1 are proved.

The proofs of the first three theorems depend on algebraic manipulations per-
formed with Q(¢ + 7a) and Lemma 1. For equations with variable coefficients and
implicit difference approximations these manipulations can be done in the same
way and Lemma 1 is still valid provided the index condition (1.14) is fulfilled. (See
Strang [3].) Therefore, the first three theorems are also proved under these circum-
stances.

3. Noncontractive Difference Approximations. In this section we prove Theorem
4. We assume that the initial values f(x) = 0. We consider also implicit equations:
(31) le”(t + k) = ng,.(t) ’

v=20,1,2,---
vy(O)_—:O, r )

where
q

q ) _
Q= 2 bE, Q= 2 a;E, ajb;real.

j=—p j=—p

Furthermore, extra boundary conditions are given by

(32) v#(t) = g#(t) ’ p=—-1-2---, -D.

As G. Strang [3] has shown, (3.1) has a unique solution v,(t) with ||v,(t)|]o <
for every fixed ¢, if

(3.3) Q1(¢) 5 Oforall (real) £, and f darg Qi(¢) = 0.
Furthermore, the approximation is stable if

(3.4) 1Q®)| = 1@, (®)Q:(8)| = 1.
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In this section, we always assume that the conditions (3.3) and (3.4) are ful-
filled. We return to the proof of Theorem 4. Let £, be such that (1.10) holds. Ob-

viously,‘ we have in that case |Q(&)| = 1.
Let Q(£) = e*¢; then we get in a neighbourhood of z = £&:
(3.5) Q) =1+ da1(z — &)+ aa(e — £)°+ -+ - .

Now |e#Q(z)| < 1 implies that a is real.
Furthermore (1.10) implies

(3.6) a; = —c(éo)

because

Q0+ 10)| = |1 — aa + 0(a”)] = 1 4+ Ae(fo)a + 0(a”) .
Introduce now in (3.1) a new variable y,(¢) by

3.7 v, () = exp (idt/k + itw)y,(t) .
Then y,(¢) is the solution of a similar difference equation
(3.8) Ryt + k) = Rayu(t), 9(0) =0,

where Ri, R, are difference operators of the same kind as @1, Q2. The boundary
conditions get the form:

(39) yn(t) = exp (—’l(bt/k - Z‘éol-‘)g#(t) ) M= O; _1; _2; TP
Now

Bi® = Qut + 80,  Ra® = e4Qult + £0),
and according to (3.5), (3.6) and (3.9)

R = RT®R:®) = e QG + &) = 1 —dc(G)Ne + 0" .
Therefore (3.8) is a difference approximation to the differential equation

du/dot = —c(&)ou/dx ,
U(Z‘,O)=0, z20.

Furthermore, the approximation fulfills the conditions (3.3) and (3.4). If we
therefore choose the boundary conditions (3.9) in such a way that y,(f) = 1, i.e.
g.(t) = exp (it/k + t£u), then the solution y,(t) of (3.7), (3.8) converges to the
solution u(x, t) of the differential equation (3.10) with boundary condition
u(0, t) = 1.

From (3.7) Theorem 4 follows immediately. Furthermore, by the same argu-
ment as in the last section, Theorem 4 holds also for equations with variable co-
efficients. Therefore, we have also proved Theorems 5 and 6.

We consider now an example: Approximate the differential equation

(3.10)

du/dt = 2a du/ox , a>0,
with initial values f(z) = 0 by (Crank-Nicolson)
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(I — k(aDo + bh*DeD,D_))v,(t + k)
= (I + k(aDo + bA’DeD, D_),(t)), »=0,1,2, -,
2,(0) =0,
Here Do, D,, D_ are the difference operators
2hDy=E—E', W,=E-I, hD_=1-E"', I=E".

For simplicity, we assume that b = 0. The Fourier transform can be written in the
form

O() = 14 zi)\(a — 4b si.nz £/2)s%n£ — o
1 — i\(a — 4bsin” £/2)sin ¢
By simple computations we get

2bsin’ £ — (a — 4b sin® £/2)cos ¢ )
0 .
14 A (a — 4bsin® £/2)* sin® ¢ +0()
Therefore Q(¢ + i) fulfills the condition (1.10) for all £ = £, with 2b sin? £, —

(@ — 4b sin? £/2)cos £ > 0. If we choose the boundary conditions for such £ = &,
to be

Q¢ + ta) = e"“(l + 2\a

v—u(t) = exp (i¢t/k — t€ou) ,

then the solution of (3.11) behaves as described in Theorem 4. If we are especially
interested in boundary conditions independent of ¢ (i.e. ¢ = 0), we have to dis-
tinguish between two cases. Denoting by g(z) the function g(z) = 0 for z < 0,
g(x) = 1forz > 0 we get

(1) a—4b>0.Then¢ = 0for§ = wand v,(t) >~ (—1)"92(a — 4b)t — z,).

(2) a — 4b < 0. Then ¢ = 0 for § = & with a = 4b sin? &/2 and »,(f) >~
exp (—1Ew)g(4bt sin? &, — z,).

Furthermore, for increasing b, the value of £, becomes smaller and smaller, which
means that the “wave length’ of v,(f) becomes larger and larger. While in the first
case it is easy to detect that »,(f) is a mere numerical effect, it is much more difficult
to see this in the second case. It can only be detected by halving the step-size and
doing the computation twice.

4. Energy Conserving Methods. There are essentially two different types of
difference approximations which are used in practice: (1) the dissipative methods
which we have discussed in Section 2; and (2) energy-conserving methods. The
latter are defined by

Definition 5. The difference approximation (3.1) is called energy-conserving if
the condition (3.3) is fulfilled and for all (real) &

4.1) Q@) = 171 ®) Q)] = 1.

We want to investigate what properties the energy-conserving methods must
have to be contractive. We start with some lemmata:
LemMa 3. For all energy-conserving methods Q(£) can be written in the form:
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s) e+ -t
r@) e+ e 4 -+ oo
z=e¢*n=p+gqie, sk =rE".

We have in particular that an explicit difference approximation (Q = 1) is
energy-conserving if and only if Q(£) = eint,

Proof. From (3.3) we get that the function (z = ei)

(4.2) Q) = = f(2) ;

(4.3) Q}(E) Z]——-p ayz] = g(2)

Q1(%) = bs2
is analytic in a neighbourhood of |z] = 1 and that |g(z)] = 1 for |z] = 1. There-
fore, using analytic continuation, the relation

(4.4) 1/g(z) = g(1/2)

must hold. Introducing into (4.4) the expression (4.3) and identifying, we get (4.2).
LeMwMma 4. f(2) can be written in the form

4.5) fz) = H l—a; 1l —az

1l—a; z2—qa;
where o are the zeros of r(z).

Proof. If «; is a zero of r(z) then @;~! is a zero of s(2). (Observe that the a; are
real and therefore if «; is a zero of r(2), then @; is also a zero of r(2).) Therefore

f(z) = const H

=1 % — a,
Observing that f(1) = 1 (Q(0) = 1), we get (4.5).
LemMA 5. If m is the number of those zeros a; of r(z) with |a;| < 1, then the index
condition is fulfilled if and only if p = m, t.e., in (3.1) the Q; have the form:

Q=ET" Z il , Q=ET" Z czE’

7=0 Jj=0
Proof. Q1(8) = e—mitr(eit). Therefore,
+r

d arg Q,(¢) = —2mm + / dargr(e®) = —2rm + 2rm = 0.

‘When constructmg difference approximations one is, in general, not interested
in methods which just work for one differential equation. We require that the ap-
proximation (3.1) should work for all differential equations

(4.6) du/dt = ¢ du/dx , 0c=M, M > 0 some constant .

We assume that the coefficients a; of our difference approximations are poly-
nomials in ¢ such that we can use the method for systems of differential equations.
It is natural to make the following assumptions:

@) Q: = Qi(¢,¢) =0 forall (real) tandall ¢,

(€%)) ° ;
(2) Q1§ ¢)/Qi(¢,c) =1 foralléandec=0.
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LeMMA 6. Under the conditions (4.7), we have p = ¢ = m = n/2 (m is defined in
Lemma 5 and p, g are defined in (3.1)).

Proof. The number of zeros a; of r(2) = r(z, ¢) with |a; < 1 must be inde-
pendent of ¢, because otherwise Qi(¢, ¢) = 0 for some ¢. For ¢ = 0 we have by (4.7)
that f(z) = 1, (see (4.5)). This is possible only if with «; also @, is a zero. There-
fore, the number m of a; with |a;] < 1 is equal to the number of «; with |a; > 1;
ie.,n = 2m and by Lemma 5, p = ¢ = m = n/2.

Now we can show

THEOREM 5. All energy-conserving methods that approximate (1.1) with accuracy
at least one and for which the number m of roots a; with |a;| < 1 of r(z) = 0 fulfill
the tnequality m = n/2 are strictly noncontractive, 1.e., there is a & such that (1.10)
holds. Specifically, all methods for which (4.7) holds are strictly noncontractive.

Proof. Observing that s(e*) = eirfr(e~i), we get:

s(e™™) _ s(e™) + tads(e™) /0t
re)  r(e™) + daor(e™) /o

_ 8™ (1+ (68/6$ 6r/6£>>+0( 2

+ 0(a%)

Q¢ + ia) =

r(e’e) s

s(e’E) (or(e™®) /ot ar(e™)/at 2

r(eis) <1 na — wz( v —is) + (e iE) >> + 0(a)
_s(e®)

== ( — na + 2« Im——log r(eze)> + 0" .
r(e”)
If the method is not strictly noncontractive, i.e., there is no £, such that (1.10)
holds, then

I = na — 20 Im {(8/0¢) log r(e®)} = 0
and there is a neighbourhood of £ = 0 where I > 0.t Therefore,

o + .
/ nadt — 2a dargr(e®) = 2ra(n — 2m) >0,
i.e., m < n/2, which proves the theorem.

There are methods which are energy-conserving and contractive. For example,
all methods

(4.8) }n: a; B, + k) = Zn:O tniE,(8)
=0 =

with m = 0 are of this type because no extra boundary conditions are needed.
However, none of these methods is useful i.’ one wants to integrate equations (4.6)
for small ¢, because either they do not reduce to unity for ¢ = 0 or Qi(¢, 0) has a
root on the unit circle. Furthermore, they are useless for differential equations (4.6)
with ¢ < 0 because the index condition cannot be fulfilled. If one, therefore, wants
to use (4.8) for systems of differential equations ou/dt = A du/dx, where the
eigenvalues of A have different signs, then one has to transform « in such a way

1 In a neighbourhood of & = 0, (&) = M + O(&), i.e., Q& + ia) = e + O((¢ + ©a)?).
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that the new A4 is in diagonal form and one must use different formulas for differ-
ent components. Methods of this type have been considered in [6].
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