
On Difference Approximations 
with Wrong Boundary Values* 

By Heinz-Otto Kreiss and Einar Lundqvist 

1. Introduction. Consider the differential equation 

(1.1) au/at = au/ax 

in the quarter space x _ 0, t > 0. (1.1) has a unique solution if initial values 

(1.2) U(x,0 ) = f(x), 0 ? x < c 

are given. We want to solve this problem by difference approximation. Therefore, 
we introduce a time-step k > 0, a mesh-width h = 1/N, N a natural number, and 
gridpoints xv by xv = vh, v = 0, 41, 42, * . As usual, we assume that k/h = X 
where X > 0 is a constant. Denoting by v,(t) = v(x,, t) a function defined for all 
x = x, and t = tm = mk, m = 0,1, 2, ... we approximate (1.1), (1.2) by 

(1.3) v, (t + k) = Qv, (t) V = 0,1, 2, 
v (O) = f(x'). 

Here Q is a difference operator which can be written under the form 

q 

(1.4) Q = , aEj , Eg(x) = g(x + h), 

where aj are constants. 
In contrast to the continuous problem v,(t) is not uniquely determined by (1.3), 

because we cannot compute vo(t + k) without v_p(t), v,p+i(t), * * *, v_(t). We there- 
fore introduce extra boundary conditions 

(1 .5a) v,m,(t) = g,.,(t) , u = -1, -2, -3, *.. , -p, 

where g,,(t) are any uniformly bounded functions, i.e., 

(1.5b) q9;,(t)I _ M, M constant. 

Assume that the approximation (1.3) is stable. What can we say about the con- 
vergence of v,(t) towards u(x, t), as h -> O? 

For two special cases this question has been answered in an interesting paper 
by S. Parter [1]. He has shown that the estimates of Theorem 1 hold for the Lax- 
Wendroff scheme and the Friedrichs scheme. 

We want to generalize this result to general dissipative approximations, using a 
completely different technique. Furthermore, we shall give a fairly complete classi- 
fication of all stable difference approximations according to the influence which the 
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boundary conditions (1.5a) have on the solutions. To state our main results we need 
some definitions: 

Definition 1. Let 

q 

(1.6) = a ie'j 
j=-p 

be the Fourier transform of the difference operator Q. Then we call the approxima- 
tion dissipative if 

(1.7) I0(Q)I -< 1- 61J12s for -r < < _ . 

Here a > 0 is a constant and s > 0 a natural number. 
Definition 2. We say that (1.3) is accurate of order m if 

Q(Q) = eit + O(Qm+1) x = k/h 

It is well known (see for example [2]) that Definition 2 is equivalent to the usual 
definition of the order of accuracy. 

Definition 3. We say that gv = g(xv) and qv = q(xv) are grid functions if they 
are defined for all x = x,, v = 0, 41, 42, ... and 

E Jg9j1 2 , ZE Iq1 <O 

Furthermore, we define scalar products and norms by 

(O,q)r= ) g;qh I lagllr2= (9q 9)r ZfE gI2hh 
v,=r v,= r 

If a function f, is only defined for v _ 1, then we always extend the definition 
to all v, -v < v < r, by assuming f, = O for v < 1. 

We can now formulate our main result: 
THEOREM 1. Assume that the initial values f(x) Cz Cm+l(O, oo)** and vanish for 

x > R, R some constant. Let the difference approximation be dissipative, accurate of 
order m, and assume that (1.5b) holds for the extra boundary conditions. Then there are 
constants Ki > 0, i = 1, 2, and a > 0 such that we can write the solution v,(t) of 
the difference equation under the form 

v (t) = v (1)(t) + v>(2)(t) v = 0, 1, 2, . * 

and we have the estimates: 

iIv'(1)(t) - u(x^, t) llo < tKi1hm 

(1.8) v/2() a 
{v,(2) (t)I < K2 M +max {f(x)lje-^a. 

Therefore, the influence of the extra boundary conditions is present in an interval of 
length ??- const hllog hl. 

We want to formulate a more general result. For that reason we need 
Definition 4. Let t and a be real, and consider the Fourier transform Q for com- 

** Cl(a, b) is the class of all functions which for a ? x ? b are 1 times continuously differ- 
entiable. 
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plex arguments. The difference operator Q is called contractive if for all t with 
J1J ? 7r and some a > 0 

(1.9) Q(1)R = IQ(? + i)l 1, IQ( ?ia)j ? e-a. 

Here #3> 0 is a constant. 
We are going to show: 
THEOREM 2. If Q is dissipative and accurate of order (at least) one, then Q is con- 

tractive. 
However, the converse is not true. If, for example, Q(t) = eil, then Q(t) is con- 

tractive but not dissipative. 
The more general result is stated in 
THEOREM 3. Replace in Theorem 1 the condition dissipative by contractive. Then 

the estimate (1.8) is still true. 
We can write Q(Y + ia) under the form 

Q(t + ia) = Q(t) + aQi(Q) + 0(a 2). 

Therefore, a function c(t) exists such that: 

fQ( + ia) = IQ()I .ec(?) + 0(a2) for Q(t) # 0, 

and the condition (1.9) certainly holds if either I(t) < 1 or I(t)I = 1 and 
c(t) < 0. This suggests the following definition 

Definition 5. Q(t) is strictly noncontractive if 1(t) ? 1 and for some to 

(1.10) IQ(to + ia)I = exp (Xc( o) a) + Q(a2) with c(to) > 0. 

The following theorem shows that Theorem 3 is almost the best possible result. 
THEOREM 4. Consider the difference approximation (1.3) with initial values 

f(x) -0 and assume that it is strictly noncontractive. Then we can find boundary 
functions g,(t) such that: 

y,(t) = exp (itov + iot/k)u(xv, t) , eio = Q(o) 

where u(x, t) converges to the solution of the continuous problem: 

(1.11) au/at = -c(Qo)au/ax, u(x, 0) = 0, u(O, t) = 1 . 

Therefore, the difference approximation does not converge to the solution u(x, t) 0 
of the continuous problem (1.1), (1.2). 

For simplicity we have only formulated the theorems for explicit difference ap- 
proximations. However, our results hold also for implicit equations. Using the work 
of G. Strang [3], we get: 

THEOREM 5. Consider an implicit difference approximation 

(1.12) QlvV(t + k) = Q2VV(t) 

where 

q q 

(1.13) Qi bjEj, Q2= ajEj. 
j=-p j=-P 

Assume that Qj(t) 5 0 for all t and that the index condition 
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(1.14) f 4arg Qi(e'i) = 0 

is fulfilled. Then the above theorems hold also for implicit difference approxima- 
tions (1.12). (Q(t) = Q2(t)/Q1( ).) 

It is not difficult to generalize the results to equations 

au/at = d(x, t) au/cx, d(O, t) > do > 0, 

with variable coefficients, because all arguments used depend on L2-estimates only. 
We get using a theorem of P. D. Lax and L. Nirenberg [7]: 

THEOREM 6. All results hold for equations with variable coefficients, provided the 
coefficients of the differential equation and of the difference approximation belong to C2 

(dissipative, contractive, etc., are defined in the usual way, i.e., pointwise). 
There are essentially two different types of difference approximations which 

are used in practice: dissipative methods and energy conserving methods. In the 
last chapter we investigate what properties the energy-conserving methods must 
have to be contractive. 

The reason why we are interested in this problem comes from the following 
considerations: In applications one often has to determine solutions of hyperbolic 
differential equations which are only piecewise smooth, i.e., the solutions have con- 
tact discontinuities, travelling along the characteristics, and-for nonlinear equa- 
tions- they have shocks. Thus we get in the x, t-plane discontinuity-lines which 
we can consider as internal boundaries. Now one often uses difference approxima- 
tions without doing anything special along these lines of discontinuity. We can view 
the computation in the following way: When using the difference approximation 
along a discontinuity-line we in general get completely wrong values. We can con- 
sider these values as boundary values for the computation of the solution in those 
regions where the solution of the differential equation is smooth. 

The question then is: What is the influence of the "wrong boundary values" on 
the solution? In a forthcoming paper by M. Apelkranz [5] precise estimates are 
given for contact discontinuities by a refinement of our technique. In another paper 
we shall consider conservation laws au/at = af(u)/ax and investigate convergence 
properties of difference approximations. 

2. Contractive Difference Approximations. We start this paragraph by proving 
Theorem 2, i.e., if Q is dissipative and accurate of order (at least) one, then Q is 
contractive. By (1.6) 

q 

(2.1) Q(t + ia) = aj exp (ij(t + ia)) 
3=-P 

is an analytic function of z = t + ia. Therefore, there is a constant K such that 
for all sufficiently small a > 0: 

I(t + ia)l '-Q()I + Ka . 

If Q is dissipative, then the last inequality and (1.7) imply 

IQ( + ia)! < I- 61f2?K+ Ka 
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Therefore, the theorem is proved if we can find real numbers 4i > 0 and al > 0 
such that for all a with 0 _ a _ a, and all t with 4 _ the inequality 

(2.2) Q( + ia)l 1- aX 

holds. By Definition 2 and (2.1) we can write Q(_ + ia) under the form (Rj(t + ia) 
being analytic functions of z = t + ia): 

QY. + ia) = e-Xa+itx + (t + ia)2Ri(Q + ia) 
= eitX + 42R1(,) + eix(e-xa - 1) + (e + ia)2Ri(t + ia) 

_ 4R,) = Q() -a + O(a? + a2). 

Now Qt) = 1 + (R2(t) and by (1.7) Q(<)j ? 1. Therefore 

I&Q(+ia)! ?1 - Xa+0(a4+a2) 

and (2.2) follows immediately. 
We want to reduce the proof of Theorem 3 to the case where the initial values 

f(x) 0. Let us assume that f(x) EE C+1(O, on). By extrapolation we can define 
f(x) for - ph < x < 0 in such a way that f(x) E Cm+l (-ph, co ) and max-ph <l!if(x) I 
< 2 maxo<0 Jf(x) 1. Then it is well known that (1.1), (1.2) has the solution 

(2.3) u(x, t) = f(x+ t) CCm+'(-ph <x < oo, t > ) 
We consider now the difference approximation 

(2.4) v, ((t + k) = Qv,(')(t) X = 0,1,2, .. 

v, (O) = f(x,) 

with boundary conditions 

(2.5) v,j(1)(t) = u(x,,, t) x,-= uh; , = -1, -2, . . ., p. 

Now, G. Strang [3] (see also [4, Lemma 2 and Theorem 2j) has shown: 
LEMMA 1. If IJQ(t) I< 1, then (2.4), (2.5) is stable with stability constant 1, i.e., 

if we consider the solution w.(t) of 

(2.6) w(t + k) = Qw,(t) V = 0, 1, 2, 
w,(0) =y(X') 

with homogeneous boundary conditions 

(2.7) w,(t) = 0, , =-1, -2, * *,*-p, 

then 

(2.8) 1 0w(t)0o 0 0w(0)Io 

If Q is contractive, then by definition IQ() I _ 1. Therefore, we get from Lemma 
1 in the usual way the first estimate (1.8), i.e.: 

(2.9) 1 jjV(1) (t) - u(x,, t) lo < Kithm 
We consider now the difference approximation 
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(2.10o) V,(2) (t + k) = Qv(21 (t) 2 =0,1, 2, ... 
(2.10) p =: 

0=10 
v, 

() 
0) =0, 

with boundary conditions 

(2.11) vm (2)(t) = g,(t) - u(xM, t) , = -1, -2, 

By (2.3) we have 

(2.12) IvM,(2) (t)~ ?_ M + max I f(x) I . 
O_x<Co 

It is obvious that the solution v(x, t) of (1.3), (1.4) can be written in the form 

v(x, t) = v(1)(x, t) + v(2)(x, t) . 

Therefore, we have proved Theorem 3 (and therefore, by Theorem 2, also Theorem 
1), if we can show that for v(2)(x, t) the second estimate (1.8) holds. 

Let y(n)(x) = y(n) denote the functions (n > 0 natural number). 

(2.13) (n) = 0 forv = 0, 1, 2, , 
= v (2)(t) for = -1, -2, 2 -pandt = nk. 

Define functions w,(n)(t) by 

o(n) (t)--0 for t = 0,k, .*, (n - 1)k , 

(2.14) ,(n) (t + k) = Qcw,()(t) v=0,1,2 t>nk, 

W 
n 

n)= Qy, (l-1) 

with boundary conditions 

(2.15) W_(m)(t) 0 for = -1, -2, * * *,-p. 

Then we can write the solution of (2.10), (2.11) for v > 0 in the form: 
tlk-1 

(2.16) v^(2)(t) = E co'j)(t) , v = 0, 1, 2, *.. 
j=o 

We want to estimate the w, W (t). By assumption, Q is contractive. Let a, ,3 be 
positive numbers for which (1.9) holds. Introducing new variables co,(n) (t) by 

WY(n) (t) = exp (-cv - ,(t/k -n))o,(n)(t) 

into (2.14), we get 

(2.17) W (t + k) = Qc()) = 0, 1, 2, ... * 
CZ (n) (nk) = eap Qyv(n 

1) 

with boundary conditions 

c (n) _ ( 1 2 

The Fourier transform of Qi has the form 4 = e$Q(t + ia), and therefore by 
(1.9): 

(2.18) 1if ? 1. 
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Furthermore, we get from (2.13) that Qy (n-l) = 0 for v > p. Therefore, there exists 
a constant K such that 

(2.19) 00f' (nk) II o' < K'he 2a(p-1) I {vI (2) (t) 1 2 

(2.18) says that we can apply Lemma 1, and (2.19) gives us 

,l (n) (t) 11 02 
2 

K2e2a(p-1) E v.(2) (t) 12 2 t> n 
<I=-7n 

Therefore, 

(n) (t) -i e- ( tkn) 
I 

v (t) 

< e-ay-#( t/kn _)h-1/ 211 (n) (t) II 

(2.20) 2 
-1 2 1/2 

_ Ke )tEIVA2 t 12 e-v tkn 

A=-P 

< K e (") M + 2 max If(x) ! )e ( t/k-n) e t ? nk. 

Now (2.16) and (2.20) imply the second estimate (1.8) without difficulty. There- 
fore, Theorem 3 and Theorem 1 are proved. 

The proofs of the first three theorems depend on algebraic manipulations per- 
formed with Q(Y + ia) and Lemma 1. For equations with variable coefficients and 
implicit difference approximations these manipulations can be done in the same 
way and Lemma 1 is still valid provided the index condition (1.14) is fulfilled. (See 
Strang [3].) Therefore, the first three theorems are also proved under these circum- 
stances. 

3. Noncontractive Difference Approximations. In this section we prove Theorem 
4. We assume that the initial values f(x) 0. We consider also implicit equations: 

(3.1) Q1vv(t + k) = Q2v, (t) 

v (0) = 0, 
where 

q q 

Q= Z bjE', Q2= Za Ej, aj,bjreal. 
j=--P j=-p 

Furthermore, extra boundary conditions are given by 

(3.2) v,,(t)g = (t), u- -1, -2, * -p. 

As G. Strang [3] has shown, (3.1) has a unique solution v,(t) with IJv,(t) lo < X 

for every fixed t, if 

(3.3) 
A 

9(t 0 for all (real) {, and d arg o'(t) =0. 

Furthermore, the approximation is stable if 
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In this section, we always assume that the conditions (3.3) and (3.4) are ful- 
filled. We return to the proof of Theorem 4. Let 0o be such that (1.10) holds. Ob- 
viously, we have in that case j Q( o) j = 1. 

Let Q(Qo) = eiO; then we get in a neighbourhood of z = 0o: 

(3.5) e Q(z) = 1 + ial(z - to)+ a2(z-to) + 

Now lei+Q(z)l < 1 implies that a, is real. 
Furthermore (1.10) implies 

(3.6) a, = -XC(0o) 

because 

IM(to + ia)l = 11 - ala + 0(a 2)I = 1 + Xc(to)a + O(a2) . 
Introduce now in (3.1) a new variable y,(t) by 

(3.7) v,(t) = exp (ict/k + itov)y,(t) 

Then y,(t) is the solution of a similar difference equation 

(3.8) Rly,(t + k) = R2y,(t), y (O) = 0, 

where Ri, R2 are difference operators of the same kind as Ql, Q2. The boundary 
conditions get the form: 

(3.9) y,(t) = exp (-iqt/k - ito,)g;,(t), ,u = 0, -1, -2, . , - p. 

Now 

R1( = Qi(t + to), R2(t) = e-Q2(t + to), 

and according to (3.5), (3.6) and (3.9) 

R1) = 1- (t) R2(t) = e Q (t + to) = 1-ic(Wo)Xt + 0(02). 

Therefore (3.8) is a difference approximation to the differential equation 

(3.10) au/at = -c(O)au/ax, 
u(x,0) = 0, x 0. 

Furthermore, the approximation fulfills the conditions (3.3) and (3.4). If we 
therefore choose the boundary conditions (3.9) in such a way that y,(t) - 1, i.e. 
g,(t) = exp (i4t/k + ito,A), then the solution y,(t) of (3.7), (3.8) converges to the 
solution u(x, t) of the differential equation (3.10) with boundary condition 
u(0, t) = 1. 

From (3.7) Theorem 4 follows immediately. Furthermore, by the same argu- 
ment as in the last section, Theorem 4 holds also for equations with variable co- 
efficients. Therefore, we have also proved Theorems 5 and 6. 

We consider now an example: Approximate the differential equation 

au/at = 2a au/ax, a > 0, 

with initial values f(x) _ 0 by (Crank-Nicolson) 
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(I - k(aDo + bh2DoD+D-))v,(t + k) 

= (I + k(aDo + bh2DoD+D-)v,(t)), v = 0, 1, 2, ... 

v,(O) 0, 

Here Do, D+, D_ are the difference operators 

2hDo=E-E-', hD+=E-I, hD_= I-E-1, I =E?. 

For simplicity, we assume that b > 0. The Fourier transform can be written in the 
form 

A 1 + iX(a - 4b sin2 2/2)sin t =e 
1 - iX(a - 4b sin2 t/2)sin t 

By simple computations we get 

Q(t + ia) = e ?(1 + 2XX 2b sin2 - 
(a - 4b sin 2 /2)cos n 

+ O(a)) 

Therefore Q(t + ia) fulfills the condition (1.10) for all o = 00 with 2b sin2 4o- 

(a - 4b sin2 to/2)cos o0 > 0. If we choose the boundary conditions for such o = 

to be 

v_,,(t) = exp (ict/k -itoA) X 

then the solution of (3.11) behaves as described in Theorem 4. If we are especially 
interested in boundary conditions independent of t (i.e. q = 0), we have to dis- 
tinguish between two cases. Denoting by g(x) the function g(x) = 0 for x < 0, 
g(x) = 1 for x > 0 we get 

(1) a-4b > O. Then40 = O for= 7r and vv(t) (-1) g(2(a-4b)t-x x). 
(2) a - 4b < O. Then q = O for = t0with a = 4b sin2 to/2 and vv(t) 

exp (-itov)g(4bt sin2 0 - xv). 
Furthermore, for increasing b, the value of 4o becomes smaller and smaller, which 

means that the "wave length" of v,(t) becomes larger and larger. While in the first 
case it is easy to detect that v,(t) is a mere numerical effect, it is much more difficult 
to see this in the second case. It can only be detected by halving the step-size and 
doing the computation twice. 

4. Energy Conserving Methods. There are essentially two different types of 
difference approximations which are used in practice: (1) the dissipative methods 
which we have discussed in Section 2; and (2) energy-conserving methods. The 
latter are defined by 

Definition 5. The difference approximation (3.1) is called energy-conserving if 
the condition (3.3) is fulfilled and for all (real) t 

(4.1) = Q-1())I2( )| = 1 
We want to investigate what properties the energy-conserving methods must 

have to be contractive. We start with some lemmata: 
LEMMA 3. For all energy-conserving methods Q(t) can be written in the form: 
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(4.2) 
- 

s(z) 
_c 

z= + c,z + 
+ 

* 

= 

f(z) r (z) CnZ n+ cn-1Z' + + CO 

z = e, n = p + q, i.e., s(z) = zn r(z-1) 

We have in particular that an explicit difference approximation (Q 1) is 
energy-conserving if and only if Q(t) = e 

Proof. From (3.3) we get that the function (z = e0i) 

(4.3) -Q2() = _=-_ (Z) 

is analytic in a neighbourhood of IzI = 1 and that Ig(z) = 1 for IZi = 1. There- 
fore, using analytic continuation, the relation 

(4.4) 1/g(z) - g(l/z) 

must hold. Introducing into (4.4) the expression (4.3) and identifying, we get (4.2). 
LEMMA 4. f(z) can be written in the form 

(4.5) f(z) = 1 ' 1-H1z 

where ay are the zeros of r(z). 
Proof. If aCj is a zero of r(z) then a,-' is a zero of s(z). (Observe that the aj are 

real and therefore if aj is a zero of r(z), then Cj is also a zero of r(z).) Therefore 

f(z) = const I 1 - VYz 
j1 Z - a 

Observingthatf(l) = 1 (Q(0) = 1),weget (4.5). 
LEMMA 5. If m is the number of those zeros aj of r(z) with [caj < 1, then the index 

condition is fulfilled if and only if p = m, i.e., in (3.1) the Qj have the form: 
n n 

Q1 = Enm E cnjEj, Q2 = E?m E CjEj 
j=o j=o 

Proof. Qi(t) = e-mir(e0i). Therefore, 

f d arg Q'(t) = -2irm + f d arg r(e't) = -2irm + 27rm = 0. 

When constructing difference approximations one is, in general, not interested 
in methods which just work for one differential equation. We require that the ap- 
proximation (3.1) should work for all differential equations 

(4.6) au/at = c du/dx, 0 ? c < M, M > 0 some constant. 

We assume that the coefficients aj of our difference approximations are poly- 
nomials in c such that we can use the method for systems of differential equations. 
It is natural to make the following assumptions: 

(4.7) (1) Q1 = Q1( %c) $ 0 for all (real) t and all c, 
(2) Q1(% c)/(,%( ,c) = 1 forall andc = O. 
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LEMMA 6. Under the conditions (4.7), we have p = q = m = n/2 (m is defined in 
Lemma 5 and p, q are defined in (3.1)). 

Proof. The number of zeros ai of r(z) = r(z, c) with tail < 1 must be inde- 
pendent of c, because otherwise Qi(t, c) = 0 for some c. For c = 0 we have by (4.7) 
that f(z) -1, (see (4.5)). This is possible only if with aj also cj-' is a zero. There- 
fore, the number m of ai with Jail < 1 is equal to the number of ai with Jajl > 1; 
i.e., n = 2m and by Lemma 5, p = q = m = n/2. 

Now we can show 
THEOREM 5. All energy-conserving methods that approximate (1.1) with accuracy 

at least one and for which the number m of roots a1 with Jail < 1 of r(z) = 0 fulfill 
the inequality m ? n/2 are strictly noncontractive, i.e., there is a 6o such that (1.10) 
holds. Specifically, all methods for which (4.7) holds are strictly noncontractive. 

Proof. Observing that s(e0t) = eintr(e-it), we get: 

- s(eit-a) s(et') + iaas(e")/at + O(a2) 

r~ 
a - (ei~a ) r (ei') + iaar(et")/a~ 

- (e'~ + ia(as/a~ a r/ak)) + O(a 2) 
rs(e't) s r 

- (eti) (1 - na - ia(ar(e ) /at + ar(e)/v )) + O(a') 

- 
(e) (I - na + 2a Im log r(ei)) + o (a2) 

If the method is not strictly noncontractive, i.e., there is no 0o such that (1.10) 
holds, then 

I = na - 2a Im { (a/a9) log r(eti)} ? 0 

and there is a neighbourhood of t = 0 where I > 0.t Therefore, 

f nadS - 2a f d arg r(et) = 2ira(n - 2m) > 0, 

i.e., m < n/2, which proves the theorem. 
There are methods which are energy-conserving and contractive. For example, 

all methods 

n n 

(4.8) E ajEjv,(t + k) = E anjEjv,(t) 
j=o i=o 

with m = 0 are of this type because no extra boundary conditions are needed. 
However, none of these methods is useful il one wants to integrate equations (4.6) 
for small c, because either they do not reduce to unity for c = 0 or Q1(%, 0) has a 
root on the unit circle. Furthermore, they are useless for differential equations (4.6) 
with c < 0 because the index condition cannot be fulfilled. If one, therefore, wants 
to use (4.8) for systems of differential equations au/at = A au/ax, where the 
eigenvalues of A have different signs, then one has to transform u in such a way 

t In a neighbourhood of t = 0, !(t) = eiXt + O(W2), i.e., W + ia) = eit-a + O((Q + ia)2). 
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that the new A is in diagonal form and one must use different formulas for differ- 
ent components. Methods of this type have been considered in [6]. 
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