
Finite-Difference Methods for 
Nonlinear Hyperbolic Systems 

By A. R. Gourlay and J. Li. Morris* 

Introduction. Finite-difference schemes of explicit and implicit type are derived 
for the numerical solution of first-order nonlinear hyperbolic systems, both in con- 
servation and nonconservation form. 

The discussion will be restricted to problems in one- and two- space dimensions, 
and to problems which have smooth solutions. 

PART I 

1. One-Space Dimension. Consider the first-order system of conservation laws 

(1.1) Ou/Ot + of/ax = o, u(x, 0) = uo(x), t > 0, 
where f is a vector function of the components of u and u is an unknown vector 
function of x, t. 

If the differentiation is carried out in (1.1) the equation 

(1.2) au/ct + A(u) cu/Ox = 0 

is obtained where A (u) is the Jacobian matrix of the components of f with respect 
to the components of u. Equation (1.2) is said to be hyperbolic if the eigenvalues 
of the matrix uiI + OA are real for all real numbers ,u, 0. 

Several authors have proposed finite-difference schemes for the numerical in- 
tegration of (1.1) (or (1.2)). In [6], Lax and Wendroff introduced an explicit scheme 
which is stable if the Courant-Friedrichs-Lewy condition [2] is satisfied. In [10], 
Richtmyer showed how the Lax-Wendroff scheme could be written as a two-step 
process. Strang [13], has also considered the Lax-Wendroff scheme and in addition 
has examined the application of Runge-Kutta type methods to the integration of 
(1.1). Implicit methods, which are more difficult to apply, appear only to have been 
considered by Gary [4] although Richtmyer [10] has hinted at their possible use. 

In Section 2 we will develop a general two-step process and in particular a new 
predictor-corrector scheme. In Section 3 an implicit scheme, similar in nature to 
Gary's scheme, will be considered. 

2. Explicit One-Dimensional Case. We shall employ the followiilg notation: 

u(ih, mk) umi ur, 

p = k/h, 

where h, k are the mesh spacings in the space and time directions, respectively, on 
the superimposed grid. 
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In his review paper [101, Richtmyer formulates the explicit Lax-Wendroff 
method [6] as the two-step procedure 

(2.1) Ur+I 
= um _ 

p/4Hxfm, 
UM+l = umr- p/2 Hxfm+i, 

where 

ir = 2 [Uni + U&j. 

This procedure may be regarded as calculating the value um+1 by introducing 
an intermediate or auxiliary value um+X. This value is an approximation to the solu- 
tion at the point (ih, (m + -)k), but it is only correct to first-order, whereas the 
overall scheme (2.1) is correct to second-order. It is not obvious what is gained by 
restricting the intermediate value to be an approximation to the value um+?. 

The scheme 

(2.2) U+1= apHfm 
Ur~n - aHf 

provides an approximation to the value of u at the point (ih, (m + 2a)k), correct 
to first-order. Let us therefore consider a scheme which employs (2.2) as a first step 
and the general formula 

(2.3) Um+i = um -pHz[bfm + cf.*+,] 
where b and c are constants and f*+l = f(u*+i) as the second step. 

If we substitute for the starred values in (2.3) by means of formula (2.2) and 
expand the resulting difference scheme by Taylor's theorem, retaining terms up to 
and including those of order h2, we obtain 

(2.4) Um+lF U -2(b + c)k Lf + 4ack2 (A 'Of + 0(h3). 
L O~~~clx Ox Ox ,J 

A Taylor expansion of ur+l in terms of un and its derivatives yields 

r Oau k2 2u a 

Um+i = lu + k at + 2 at2 Im 
If we now use the relations (1.1) anld 
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/ I 
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we have 

(2.5) Un+l U[ - k + (A 8{)1r+ 0(h). 

A comparison of (2.4) and (2.5) shows that in order that the general two-step 
method be accurate to order h2, the equations 

2(b + c)-1, 8ac = 1, 

must be satisfied. This set of equations has the solution 
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in terms of the parameter a. Formulae (2.2) and (2.3) now form the two-step 
method 

U*+1 = m - apHxfm, 

(2.6) Un+l = Um - p/2Hx[(1 - 1/4a)fm + f,;+1/4a]. 

The choice a reduces (2.6) to the two-step Lax-Wendroff method (2.1). 
Let us now examine the stability of the formula (2.6) with respect to growth of 

round-off errors. We assume that the stability of a nonlinear finite-difference scheme 
is governed by the local amplification matrix [13]. 

This is equivalent to considering the stability of (2.6) when the matrix A is a 
constant. In this case no loss of generality occurs if we assume A to be symmetric. 
(This assumption simplifies the stability analysis.) If formula (2.6) is linearized, 
the scheme 

U*+1-X -pHu 
A 

m Urn - apAHxur, 

(2.7) Um1 = Um - p/2 AH[(1 -4+)Um + 4 

is obtained. Eliminatioin of u*+i from (2.7) leads to the formula 

(2.8) Um+i = u, - pA Hx[Ui M+ 
I 

(um+-2ujm + ul) + 8 HX2u n. 

If a Fourier decomposition of the errors is made in the usual manner, it follows that 
the amplification matrix G of (2.8) (and hence locally of (2.6)) is given by 

G = I -2p2A 2 sin2 h - pAi sin Oh[1 + (-1 + cos ,h)] 

where f3 is a real number. The Lax-Richtmyer condition for stability [8] requires 
that 

IG*Gil < 1. 

This is satisfied if the eigenvalues of G * G are less than one in modulus. 
If the eigenvalues of A are given by JA - XII = 0, it is easily seen that the 

eigenvalues g, (g > 0), of G * G are given by 

9 = 1 - p2X2 sin2 Oh[1- sin2 f3h - - sin2 )2-] 

and therefore for stability we require 

p2X2S. 2 ( 1 .0 13'2 
1-- X sin2 :h-i1 --sin2 >0, 4 \ 2a 2 

that is, 

p2X2 < (4a - sin2 fh/2)/4a2 cos2 (3h/2) 

for all real O3. 
Since p2X2 > 0, we have immediately that 

4a - sin2 (3h/2) > 0 
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for all real #3. This requires that a ? 1/4. Let 

Q(z) = (4a-1 +z)/4a2z, O<z< 1 

then 

dQ/dz = (1 - 4a)/4a2z2. 

Since Q(z) > 0 and a > 1/4, it follows that dQ/dz < 0 and that the minimum of 
Q(z) occurs at z = 1. 

It follows that for stability 

p22 < min 4a-1 + COS2 (Qh/2) _ 1 
O<cos2(#h/2)<1 4a2 cos2 (3h/2) a' 

that is, 

pIXI < 1/Va. 

Since the Courant-Friedrichs-Lewy condition [2] requires that pjXf < 2, it follows 
that we have "maximum" stability if a = 4 and conditional stability pI XI ? 1/ iV a 
otherwise. 

In an actual implementation, the above schemes require data not only on the 
initial line t = 0 but also on the two bounding lines x = xo, x1, say. The experiments 
of Richtmyer and Morton [11], Gary [4], and Parter [9] show that the incorpora- 
tion of such data must be treated with care. Whilst a procedure for smoothly in- 
corporating the boundary data can readily be derived, we propose to use the fol- 
lowing technique. We shall regard (2.6) as generating the predictor-corrector scheme 

UM+i = UM - paHxfmrn 

(2.9) U (i+1i) U -P/2HzF(1 - + lf(i)1 
rn+1 ~~~~ ~~4a, 4a fn+(l+ 

forj = 1, *. where 

fm+ 1 fm++i 
and the sequence of iterates 

{u1, j =2, ...} 

is required to tend to the solution at u(ih, (m + 1)k). 
We are therefore really finding the solution of the replacement 

(2.10) UM+i = Um- p/2Hx[( -4 )fm + 
1 

fm+i] 

by an iterative procedure. If the expression on the right-hand side of (2.10) is ex- 
panded by Taylor's theorem in terms of um and its time derivatives to order k2, the 
expansion 

F O, U k2 ' 2U 
(2.11) Um+ L+U k at + 4a 2 im ?0(k3) 

is obtained where use has been made of (1.1). Whilst every replacement is a con- 
sistent one, only the choice a = 2 gives a corrector which may converge to the 



32 A. R. GOURLAY AND J. LL. MORRIS 

order of the overall scheme (2.9). Let us now demonstrate the convergence of the 
iterated corrector in (2.9). 

Subtracting (2.10) from the corrector in (2.9) gives the equation 

UM+u 1 - UM+ = -ppH[fmi+- fm+i]/8a . 

To carry the analysis further we are again forced to linearize this equation and 
obtain 

(2.12) Urn+i) um+1 = -pAHA[u(+1 - um+i]/8a, 

where we now assume that A is constant at any time level. If the notation 

Eii+l = Ui+l - UM+l Ej+l = (El ... ENi) 

is introduced, then the totality of equations of the form (2.12) for consecutive 
iterates may be written in the form 

(2.13) Ej+l = AlEj 

where A1 is block tridiagonal (with zeroes on the diagonal) and where we have 
assumed periodic boundary conditions. The iterative process will therefore converge 
if I A 14 < 1. The analysis given by Gary [4, p. 16] to prove the convergence of his 
explicit iterative scheme may then be applied without change. We shall not repeat 
it but merely state the conclusion reached; namely, that for convergence we require 
ptXI < 4a. 

The most satisfactory predictor-corrector process is obtained when a = 2, for 
only in this case do the iterates converge to the order of the overall method. This 
scheme is given by 

(2.14) Ur+1 = ur - p/2 Hxfmrn 
um++l= Ztm - p/4 Hx[fm + fm4j+] I (j = 1 2, 3,*) 

Let us briefly summarize two interesting points arising from the above analysis. 
(a) For overall stability the condition is a > 1/4, implying that the prediction 

must not be made in the interval between the points u(ih, mk) and u(ih, (m + ')k). 
(b) We may in fact use a prediction in advance of the (m + 1)th level and still 

maintain stability. For example, if a = 1 the prediction is at the (m + 2)th level 
and the appropriate formulae are then 

(2.15) um+1 = uM - pHxfmn, 
UM+l = Ur-p/8 Hx[3fm + fm7+i]. 

Although all the previous analysis has been carried out for the case of a system 
in conservation form, it may easily be verified that if the equation is not in con- 
servation form, but of the type 

au/at + A(u) au/ax = 0, 

then a similar general scheme may be obtained. It now takes the form 

(2.16) Um =rn - paAmH,Um, 
UM+l um - p/2[(l - 1/4a)An,Hitm + (1/4a)A*+1Hxu*+l] 
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where Am _ A(urn) and A* +1 A(umi). 
The above schemes bear a strong resemblance to several finite-difference meth- 

ods for solving the ordinary differential equation y' = f(x, y). For example, the 
Lax-Wendroff method (2.1) is similar to the "improved Euler method," 

Yn+1/2 = yn + 2fn, fn = f(x., yn), 

Yn+1 = Yn + hfn+1i2, 

whereas the scheme (2.14) mirrors the "improved Euler-Cauchy method," 

Y*+ = Yn + hfn Yn+1 = Yn + 2h[fn + f*+?]?. 

3. Implicit One-Dimensional Scheme. In [4], Gary considered the following 
scheme 

(3.1) UM+ = Umr-p/2 AmHxum, 
Um+ = um- P/4A('[um + u*+l])Hx(um+l + Ur), 

for the numerical integration of the system of equations in nonconservation form 
given by 

au/at + A (u) au/ax = 0. 

This method is an approximation to the Crank-Nicolson scheme 

(3.2) UM+1 = um- p/4[AmIHIxum + Am+rIHxnum+i] 

and is again accurate to order h2. It is easy to see that as it stands (3.2) cannot be 
solved for um?l because of the nonlinear term A (um+i). 

The predictor used in (3.1) is in fact an unstable one. We prefer to use 

(3.3) UM+n = Um p/2 AmHrum 

and then apply (3.2) in the form 

(3.4) UM+1 = Um- p/4[AmHxum + A*+iHxum+liI. 

This scheme is still accurate to order h2 but now permits the calculation of um+l by 
a block tridiagonal inversion. Methods for inverting such systems are well known 
[12], [14], and will not be repeated here. By linearizing (3.4) we may show that, 
like Gary's scheme, it has unconditional stability. 

Whereas Gary's scheme was designed specifically for schemes in nonconserva- 
tion form, it is easy to verify that the formulation of (3.4) for conservative systems 
is given by 

U+1 = 2im -p/2 Hxfm 
(3.5) Ur+ r )2Hfn 

UM+i = UMr- p/4 Hx[fm + J*T+iUm+i], 
where l (u) is defined by the relation f(u) = u(u) *u. The formula (3.5) is again 
accurate to order h2 and is unconditionally stable. The solution um+l may be ob- 
tained once again by a block tridiagonal inversion. 

Each equation occurring in (3.5) and (2.6) is in conservation difference form 
(Lax and Wendroff [6]). 
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4. Numerical Results. In order to compare the above methods, several calcula- 
tions were carried out for the simple problem 

Ou/at + 8/8x(2 u2) = 0, u(x, 0) = x, 0 < x <1, 

which has the solution u(x, t) = x/(1 + t). 
The values a = 4, 2, 1 were taken for the parameter in the scheme (2.6) and 

the iterated scheme (2.9). A comparison was then made between the results ob- 
tained from the schemes and the implicit scheme (3.5). In the calculations the 
values h = 0.1, p = 0.6, 1.0 were taken and the results for the errors (the differences 
between the theoretical solution and the computed solution) are quoted in Table 1 
for the point x =12 

The entries * in the table indicate that nonlinear instability had developed. 
Although this topic is of great importance we shall not deal with it here but merely 
note its occurrence. The results in the table tend to confirm the analysis given 
above, in that iteration in the case a = 2 gives improved results, whereas iteration 
in the cases a = 4, 1 leads to a loss in accuracy, and perhaps to nonlinear insta- 
bility. The results quoted are representative of the calculations made with the 
various schemes. 

It was found that no more than two iterations were required for convergence of 
the significant figures for the scheme a = 2. 

PART II 

Two-Space Dimensions. We shall now extend the methods introduced in Part I 
to the case of the two-space dimensional system of conservation laws 

au/at + af/Ox + OglOy = 0 

or the nonconservative system 

au/lt + A(u) au/lx + B(u) au/ly = 0. 

We shall assume that A and B may be simultaneously symmetrized in order to 
guarantee the hyperbolicity of the above system. 

Explicit difference schemes have been proposed by Lax and Wendroff [7], 
Richtmyer [10], Strang [131, and Burstein [11 for the solution of these equations. 

5. Explicit Two-Dimensional Case. In [10], Richtmyer shows that the two-step 
formulation of the Lax-Wendroff method for systems in two-space dimensions, is 
given by 

(5.1) UM+ = Um- p/4[Hjm + Hygm] I 

Um+1 = Um - p/2[Hxfm*+ + Hygq+i] I 

where u , um U u(ih, jh, mk) 

= 
-[um+1,j 

+ U,7 l j + U',;j+i + Utij-] 

and the operators HX and Hy are defined by 
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HUm = U - 

Hyum = u -,j+j - uxj_ 

In exactly the same way as before we may generalize this scheme to the form 

* = Ur - pa[Hzfm + Hy,m], 

(5.2) Um+1 = Ur - p/2 [(1 [H2f + Hygm] + 4 [Hzf *+ + Hyg* +1 I 

where once again we have second-order accuracy. 
In order to examine the stability of the class (5.2), the equations are linearized 

and u*+i is eliminated. This produces the scheme 

Um+i = um - p/2[AHx + BH][( - um + um] + P [AHz + BH]um m 

where A, B are now assumed (as in the one-dimensional case) to be constant, 
symmetric matrices. After making the usual Fourier transform of the space vari- 
ables, the amplification matrix G is given by 

G = I - ip[A sin ah + B sin Oh][( 1 - ) + 8 (cos ah + cos Oh)] 
2 

- 2 [A sin ah + B sin Oh]2 
2 

where a, fi are real numbers. 
Let Z denote the symmetric matrix A sin ah + B sin Olh. Then if Xz is an eigen- 

value of Z, the eigenvalues of G * G are given by 

g= (1 P Z) + p2xz2[(1 - + 8 (cos ah + cos Oh)1 

For Lax-Richtmyer stability we require g < 1, and therefore 

(5.3) P24 
? 1 (-4a) + 8a (cos ah + cos ,h)] 

for all a, A; that is 

p2 ? mi - 1 [8a -2 + (cos ah + cos Ih)]2l} . 
a,# QXzL 16a2 j 

Because of the dependence of Xz on a, fi, A, B it will be necessary to consider the 
stability of the scheme (5.2) with regard to a specific problem. Following Richtmyer 
[10] we consider the equations of gas flow. There the maximum eigenvalue of the 
matrix Z2 is given by 

(IJl + C)2(sin2Olh + sin2 ah) 

where Iql is the speed of the fluid and c is the local speed of sound. In this case, 
therefore, we have the stability condition 

2(j 1 + C)2 < Mi 4 - 2 [8a - 2 + (cos ah + cos h) 
p2Cq +ic) n ? mm - 16a sa = M a) . 

a,# ~~sin2ah + sin 2O~h 
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By analytical means, or by a simple scanning run on a computer it may be 
shown that M(a) is negative for a < 4 and that it has a maximum at a = 4. More- 
over, it decreases steadily in the range 4 < a _ a). A graph showing the behaviour 
is given below in Fig. 1. 

Moreover, from (5.3) it can readily be seen that a _ 4, independent of Xz, is a 
necessary condition for stability. 

It appears, therefore, that the Lax-Wendroff method (a = 4) is optimum for 
this class as far as stability is concerned. 

However, we may still consider the case a = 2 to see if the iteration of the cor- 
rector improves our accuracy or not. This scheme is given by 

u(1) = A 

-p/2[Hxfm + HygmJ] 

Um+ = p/4[Hz(fm + f4i) + Hv(gm + gj4=)] ( ( 1, 2, 3, ...) 
and its stability range is 1/ Vl 2 times that of the Lax-Wendroff method. As before, 
we may derive the error equation in the form 

Um+i) -p/4 
[Hz (fmi+ 1- fm+ 1) + Hv(g (j) 1-9m + 1 )] 

which on linearizing may be put in the form 

E j+ =-p/4[AHze' + BH,e'] 

where e I+l = u- +1)-um+1. 
The application of an analysis exactly similar to the one-dimensional case shows 

that convergence will occur if 

PIXAI | 1, PIXBI < 1 

which are satisfied by the stability requirement. 
Just as in the one-dimensional case, we can show that the above schemes may 

be derived for the equations in nonconservation form. Thus (5.2) becomes 

u*+4 = U- pa[AmHz + BmHIu.m 

Um+i = Urn - P/2[(1 - 1(AmHz + BmHy)um + 4 (A*+IHz + B*+iHyi)u*+i] 

again accurate to order h2. 

6. Implicit Two-Dimensional Cases. The natural extension of the Crank- 
Nicolson type scheme is the nonlinear analogue of the alternating direction implicit 
(A.D.I.) method considered by Gourlay and Mitchell [5]. This scheme 

(6.1) [um+l + p/4[Hxfm+l + Hygm+i] + p2/16 Hy,Dm+iHzfm+iI 

[un - p/4(Hzfm + Hygm) + p2/16 H RmHzfm] 

is second-order correct and is unconditionally stable in the linearized sense. This 
scheme involves nine points at each of two neighbouring time levels. To solve this 
implicit scheme we introduce a predictor-corrector method which employs a 
D'jakonov [3] type factorization of scheme (6.1). We therefore obtain the A.D.I. 
method 

(6.2) U** 1 am - p/2[Hxfm + Hygm] y 
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(6.3) [I + p/4Ha(um*+i)1u*+i = Q, [I + p/4HxJ (u*+,)lum+i = u*+1 

where Ji(u), B(u) are defined by the notations 

f(u) = A (u)u, g(u) = B(u)u 
and where Q is the term on the right-hand side of (6.1). 

The scheme ((6.2) and (6.3)) obtains um+1 by two block tridiagonal inversions 
and takes roughly twice as long to run on a computer as the explicit method. The 
method is still accurate to order h2. 

Also, we may derive an A.D.I. method for the case of a system in nonconserva- 
tion form. This is given by 

(6.4) UM+= um -p/2[AmHx + BmHy]um I 

(6.5) [1 + p/4 B** Hj]u* 1 = [I -p/4[AmHx + BmHJ] + p2/16 BmHyAmHxJUm, 

[I + p/4 A** H.]um+l = U*+. 

7. Numerical Results. To compare the methods in the two-space dimensional 
case the problem 

au a (1U2) + a (1U2) = o U(X Y o) = (X + y)2 

was chosen. This has the theoretical solution 

u (X, y, t) =[-{l+ ?x +Y)t}] t >o. 
[ ~ ~ ~~~t 

Once again the region 0 ? x, y < 1 was considered and a square grid with 
spacing h = 0.1 was superimposed on the region. The methods were run for varying 
p and the results are quoted in Table 2 for the scheme (5.2) with a = 1 2 and the 
A.D.J. method, the entries in the table are for the errors at the point (2, 2). 

It may be noticed that iterating the corrector at a = 2 does appear to improve 
the accuracy. Once again, only two iterations are required. If the corrector is 
iterated for values of a # 2, the divergence was rapid and nonlinear instability 
again developed. 

In fact, very little can be said as to which scheme is more accurate. Although 
the above results are representative, it has been noticed that the A.D.I. method is 
more accurate at boundary planes than in the centre of the region, whereas the ex- 
plicit methods are more accurate in the centre of the region. The stability of the 
explicit methods when p = 7.0 is certainly surprising. 

Conclusions. Several methods have been proposed for the numerical integration 
of systems of conservation laws. In one-space dimension, it would appear that the 
new predictor-corrector scheme has much to offer, as does the Crank-Nicolson 
scheme. In two-space dimensions the same advantage is gained over the existing 
Lax-Wendroff scheme. 

It would obviously be desirable to test these methods on physical problems in- 
volving shocks or discontinuities. It is hoped to carry out this investigation in the 
future. 
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The methods developed in the paper can obviously be extended in a natural 
way to a higher number of space dimensions. 

M(a) 

2.0 

I \ 
I \ 

0.25 0.5 0.0 

FIGURE 1 
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