
A Special Case of the Filon Quadrature Formula* 

By Lloyd D. Fosdick 

Introduction. The Filon quadrature formula [1] is used for the numerical evalua- 
tion of integrals of the form 

fb fb 

(1) S= f f(x) sin (kx)dx, C = f (x) cos (kx)dx. 

The Filon formula is advantageous over usual numerical integration formulas for 
smooth f(x), especially for large k, since the number of points which need be tabu- 
lated depends on the behavior of f(x) rather than onf(x) sin kx orf(x) cos kx. Under 
certain circumstances the Filon quadrature formula reduces to a simple form, 
namely 

(2) S* = ((-1)m/k){f(a) - f(b)} , C*= ((-1)/k){f(b) - f(a)}, 

where the asterisk is used to denote the inexact result produced by the quadrature 
formula; a and the integer m are related through the condition 

(3) a = m7r/k for S, a = (m + 1)7r/k forC 

and, finally, the integration interval (a, b) satisfies the condition 

(4) (b - a) = 2i7r/k, 

where i is any integer. It would seem that the error associated with the use of Eq. 
(2) as approximations for S and C would be intolerable. However, this suspicion is 
unfounded when k >> 1. Let E8 and E, be the error terms, thus 

(5) S= S*+E8 and C= C*+EE, 

then it is shown below that 

(6) JESf ? M(b - a)/k3 and Ecl < M(b - a)/k3 

where 

fd3fk 
(7) M= max 

a?<x<b fdx 

Since the error is proportional to k-3, it will be small for large k, provided that the 
third derivative of f(x) is not large relative to k. 

Thus, there is an interesting set of circumstances under which accurate estimates 
of the integrals in Eq. (1) can be obtained by a trivial computation. This work was 
stimulated by some recent work of Clendenin [2], who indicated that formulas of the 
type shown in Eq. (2) would not be very well suited for practical computations. 
Since this was not supported by a computation of the error bounds, we decided to 
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determine them. Since analysis of the error in Filon quadrature is rare, Luke's work 
[3] being one of the rare cases, many details are given here. 

The Filon Formula. This quadrature formula is derived as follows. In Eq. (1) 
f(x) is replaced by a polynomial approximation, in particular a second-degree poly- 
nomial which agrees with f(x) at three points. Since the integrals 

(8) S fb xm sin (kx)dx X = b xm cos (kx)dx, 

are obtainable in closed form this procedure leads to a quadrature formula. Follow- 
ing the usual pattern in constructing quadrature formulas, the interval of integration 
(a, b) is subdivided into p panels, each of length 2h. The integration formula is ap- 
plied to each panel; in this application the polynomial approximation of f(x) is re- 
quired to agree with f(x) at the endpoints and midpoint of the panel. Finally the 
sum of the contributions from each panel gives the desired quadrature formula. 
These formulas are 

(9) S = h[a(fo cos kxo - f2p cos kx2,) + fS2, + YS2-1] + Es, 

(10) C = h[a(f2p sin kx2,- fo sin kxo) + OC2p + YC2p-1] + Ec, 

where 

p 

(11) S2P = Ef2i sin kx2i - 1[fo sin kxo + f2p sin kx22], 
i=o 

p 

(12) S2p-1 = Zf2i-1 sin kx2i-1, 

p 

(13) C2p = Zf2i cos kx2i - [fo cos kxo +f2pcos kx2pI, i=O 
p 

(14) C2p_1 = f2i-1 cos kX2i-1 

(15) a = 1/0 + (sin 20)/202 -(2 sin2 0)/03, 

(16) ' = 2((1 + COS2 0)/02 _ (sin 20)/03) 

(17) y = 4((sin 0)/03 - (COS 0)/02) 

(18) 0= kh, 

(19) fi = f(xi), xi+ -xi = h, xo= a , X2p = b, 

and Es and Ec are the error terms associated with using the first term on the right of 
Eqs. (9) and (10) as an approximation for S and C. Where 0 is small it is necessary 
to replace the expressions for a, ,B, and y by power series in 0 to avoid the loss of 
significant figures due to cancellation in these expressions; this fact has been over- 
looked in a recently published algorithm [4]. 

The Error Term. Peano's theorem [5] is used to put the error terms Es and Ec in 
a useful form. Define the operator 
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rb j 

(20) L(f) = f f(x)t(x)dx - bif(xi) 
i=1 

where L(f) vanishes when f is a polynomial of degree n or less, the xi are contained 
in the closed interval [a, b], t(x) is piecewise continuous in this interval, and the 
(n + 1)th derivative of f(x) is continuous in this interval. Then, by Peano's theorem, 

rb 

(21) L(f) = fb f(n+l (t)K(t)dt, 

where K(t), the Peano kernel, is given by 

(22) K(t) = (1/n!)L,((x - t)') 

and 

(23) (x - t)n = (x - t) , x > t, (x - t) = O, x < t, 
and the subscript x in Lx denotes that x, rather than t, is regarded as the variable. In 
the present application E8 is to be identified with L(f) to obtain a useful expression 
for the error in the quadrature formula for the sine integral; similarly, Ec is identified 
with L(f) for the error in the cosine integral. 

Let us now direct our attention to applying the quadrature formula on one panel; 
thus we use Eqs. (9) and (10) with p = 1. The contribution to S from one panel is 

f i+2h 

(24) Si =J f(x) sin (kx)dx, 

and the contribution to C from one panel is 

Xi+2h 

(25) ci f(x) cos (kx)dx. 

After a change of variables Si and Ci can be expressed as follows: 

r+h f h 

Si = cos (kxi + 0) f gi(z) sin (kz)dz + sin (kxs + 0) f gi(z) cos (kz)dz, 
(26) r+h + 

Ci = cos (kxi + 0) J 9i(z) cos (kz)dz - sin (kxi + 0) J qi(z) sin (kz)dz, 

where 

(27) gi(z) = f(z + xi + h). 

Let us define the two integrals appearing in these expressions as 

r+h rh 

(28) Si= f+ i(z) sin (kz)dz, ci = f gi(z) cos (kz)dz, 

and consider applying the Filon quadrature formula to them. The task now is to 
determine the Peano kernel for each case; first we consider si. Identifying the opera- 
tor L with the error term associated with using the Filon quadrature formula for si 
we have 

(29) L(g9) = f gi(z) sin (kz)dz + h(a cosO - - sin 0)(gi(h) - gi(-h)) 
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It is clear that L(g,) is zero when gi(z) is a polynomial of second degree, since the 
quadrature formula is designed to be exact in this case. On the other hand it is not 
exact for a polynomial of third degree, as may be verified by substituting z3 for gi(z) 
in Eq. (29); this is different from the situation for Simpson's rule which is also de- 
signed to be exact for polynomials of second degree, but which is exact for poly- 
nomials of third degree too. Consequently, the Peano kernel is 

K8(t) = 2 {f (x - t)+2 sin (kx)dx + h(a cos 0--sin0 
(30) 

X ((h -t)+' - (-h -t)+ ). 

Notice that 

(31) (-h-t)+ =O, -h < t < h, (h-t)+ = h-t, -h < t < h, 

hence the kernel can be written 

(32) K8(t) = { (x - t)2sin (kx)dx + hQa cos - sin o)(h-t)2}. 

After executing the integration and some algebraic manipulations this becomes 

(33) K8(t) = h3{ 202 (1 - 
h()2) + 03 (Cos 0 - Cos (h ))} 

Similarly, one obtains for the kernel associated with the next integral in Eq. (28) 

Kc(t)= h6 {2h(sin - cosO)(( t _ 2( t 3 

(34) cos 8 1 t )2 _6 sin 0 t1 h) 6 (oa- ot ) 

It will be noticed that Kc(t) contains a multiplier h4 instead of h3; this arises from the 
fact that the Filon formula is exact for c , Eq. (28), when gi(z) = z3. Thus in this case 
the situation is analogous to Simpson's rule. Equation (34) differs from Luke's result 
(Eq. (19) in [3]) which contains an error. A term -2(- t/h)+3 in Eq. (34) was 
omitted by Luke. This omission stems from the omission of the j = 0 term in Eq. 
(12) of his paper. As a result the regions of definiteness for G1(s, 0) and G2(s, 0) in his 
paper are incorrect, but the error curves shown in Figs. 1-5 in his paper are correct.* 

The Simple Formulae. It is apparent that under the conditions cited in the intro- 
duction, Eqs. (3) and (4), the simple expressions in Eq. (2) result from Eqs. (9) and 
(10); notice that Eq. (4) implies that 0 is an integral multiple of 7r, 

(35) 0 = nr. 

Recalling the definition of Si, Eq. (26), it is seen that 

rh 

(36) Si = cos (((m + (i + 1)n)7r) f gi(z) sin (kz)dz, 

* Private correspondence. 
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hence only the kernel K.(t) enters into a consideration of the error associated with 
applying the Filon formula to this panel. Since we now have 0 = nr, substitution of 
this value in K8(t), Eq. (33), yields 

(37) K, (t) = (h3/n%i-3) (cos nr - cos (nrt/h)). 

The quadrature error is given by Eq. (21), hence for this case 

rh 

L(gi) = cos ((m + (i + 1)n)r) f+ g(3 (t) 

(38) X {(?h ) (cos nwr-cos (-C)o)}dt. 

Since the kernel does not change sign over the interval of integration, the mean-value 
theorem can be applied to obtain 

L(gi) = g(3) (E) cos ((m + (i + 1)n)r) 
+h ( h)3 

(39) ~~~~X(cos nri - Cos (n~ri))dt h<, h- 

and, performing the integration, 

(40) L(g ) = g9(3)(S) cos ((m + (i + 1)n)r) (h/nr)3(2h) cos (nr) 

Summation of L(gi) over the p panels yields the error Es. Using the definition of 0, 
Eq. (35), and the fact that 2hp = b - a, the inequality (6) results. 

A parallel calculation yields the same inequality for the error in the cosine term. 
The kernel Kc(t) does not enter in this computation, since the coefficient of the 
cosine integral in Eq. (26) vanishes. 
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