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1. Introduction. Error analyses for numerical methods dealing with functions of 
more than one variable are not abundant in the literature. The purpose of this 
paper is to popularize and to extend an idea due to Davis [12] for estimating the 
error made in approximating analytic functions of more than one variable. Two 
types of asymptotic results are given for the new cubatures, as well as numerical 
examples. 

Sard [24] has obtained error estimates that involve various partial derivatives 
of the function f to be integrated. His kernel theorem for functions of two variables 
is established by noting the effect of an error functional on the remainder in a 
Taylor's expansion of f. He obtains sharp bounds for the appropriate function 
spaces, but these bounds are frequently inconvenient to apply because of the dif- 
ficulty in computing them. For the one-dimensional case, see Stroud and Secrest 
[29, p. 65]. In one dimension, Davis [12] has stated a method of estimation for 
analytic functions that has the advantage of being comparatively easy to compute. 
An interesting feature of Davis' work is that it can be generalized to deal with 
analytic functions of more than one variable. He noted this in one paper [12] and 
it has been mentioned again by Valentin [30]. In this paper, Davis' method is ex- 
tended and, in a future paper, it will be compared with Sard's method. 

Other authors have studied error bounds for some special cases, which we now 
discuss. Error estimates for cross-product rules have been given by several authors 
[20], [25], [29] and the general idea has been to express the error of the cross-product 
rule as the product of the errors of lower-dimensional rules. Variations of this pro- 
cedure include, for example, Hammer's conical product rules [20]. Stenger [27] has 
recently considered error estimates for the cross-products of Gaussian quadratures. 
Von Mises has established a certain error bound for cubatures, which is discussed 
by Stroud [28] and involves bounding certain partial derivatives after a transfor- 
mation into spherical coordinates. Lyness [22] has discussed symmetric integration 
rules and his work contains error estimates. During the work leading to this paper, 
the author conjectured that theorems similar to those proved in Krylov [21] for 
the trapezoidal and Simpson's rules and in Meinguet [23] for Romberg one-dimen- 
sional integration could be proved for symmetric one-dimensional rules and ex- 
tended to symmetric multidimensional rules by using Lyness' work. This conjec- 
ture has not been resolved. There is also a growing literature on approximation of 
functions of more than one variable by spline functions, references to which can be 
found in an article by Birkhoff and de Boor [9]. 

Although only cubatures will be discussed in this paper, the same methods can 
be used for other linear approximations, some of which will be discussed in a future 
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paper. We assume that the functions to be integrated are analytic and uniformly 
bounded in norm. The goal is to find bounds on the error functional that are 
simpler than the standard ones in the sense of not involving various partial deriva- 
tives. In principle, this seems feasible because of Cauchy's integral formula for 
analytic functions, which relates derivatives to values of the function itself. 

We shall consider cubatures of the form 

r r n 

(1) ]] f(x, u)dxdu = E Akf (Xk, Uk) , 
IXI k=1 

where I X I = {(x, u): -1 < x < 1 -1 < u ? 1 }. Ep is the ellipse with foci 
at 4?1, semimajor axis a, semiminor axis b = (a2 - 1)1/2, and p = (a + b)2. Ep X Ep 
is called an elliptic bicylinder [10] and it consists of pairs of complex numbers (z, w) 
with z and w each belonging to the region enclosed by Ep. The more general elliptic 
bicylinder Ep X Ep' consists of (z, w) such that z is in the region enclosed by Ep 
and w is in the region enclosed by Ep'. We consistently use the notation z = x + iy, 
w = u + iv, where x, y, u and v are real. The functions to be integrated, f(x, u), 
are in the space L2(Ep X Ep) = {f(z, w): f is analytic for (z, w) inside Ep X Ep 
and f f *f fEpXEp I f(z, w) 12dxdydudv exists }. Let us denote L2(Ep X Ep) by L2. 

2. Properties of L2. The Hilbert space L2(Ep) = {f(z): f is analytic inside Ep 
and JJEp If(z) j2dxdy exists } is discussed in Davis [14]. It has been used in quad- 
rature theory by various authors [1]-[7], [12], [13], [16], [30], [31] and it is to be 
noted that analogues of certain properties of L2(Ep) that are applicable to quad- 
ratures also hold for L2 and cubatures. Some of these properties are summarized in 
Theorem 1. 

THEOREM 1. L2 is a Hilbert space in which point functionals are bounded. If 
{pr(Z) } rO is a complete orthonormal sequence in L2(Ep), then {pr(Z)ps(w) r,s=O is a 
complete orthonormal sequence in L2. 

Proof. L2 is an inner product space with the inner product 

(f, g) ffff f(z, w)g(z, w) dxdydudv 
Ep X Ep 

and the norm f = (f, f)112 [8]. In order to show that L2 is complete, we first 
show that point functionals are bounded. For the point functional L(f) = f(O, 0), 
the inequality 

fO O)2 ? ( -)2 f I f(pieiale p2eia2)I2daida2 

follows from Cauchy's integral formula, where z = p1eil, w = p2eia2 and the cir- 
cular bicylinder A: 0 ? pj _ r, j = 1, 2, is chosen so that f(z, w) is analytic in it. 
Multiplication of both sides of the inequality by P1P2 dpidp2 and integration be- 
between 0 < pj ? r, j = 1, 2, yields the following: 

If(O,O )l2 < A4L|If(z, w) 2dvdvv 

where dvxdv, = dxdudydv. Thus 
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) i0 < [J If (z w) 2dvdvl < 

and the point functional L(U) = f(O, 0) is bounded. In order to prove that the 
point functional L(f) = f(zo, wo) is bounded for an arbitrary (zO, wO) in E, X Ep, 
it suffices to choose r > 0 such that the circular bicylinder Iz - zol < r, 
w - wol < r is contained in E, X E,; then the above proof can be paraphrased 

to get the desired result. Following Bochner and Martin [10], we write I f(z, w) I 
wrl I fl j where wr depends on r but not on f. The fact that point functionals are 
bounded means that norm convergence implies uniform convergence on closed sub- 
sets of E, X E,. For, if I f. } is a Cauchy sequence in L2 and B is an arbitrary 
closed subset of E, X E, with (z, w) in B, then the inequality 

Ifn(z, w) - fm(Z, W)I < Wrijfn fmin! 

implies that {fn } is a Cauchy sequence in the sup norm on B. Since the fn are 
analytic, they have a limit function f which is also analytic and, since B is an 
arbitrary closed subset of E, X Ep, f is analytic in E, X E,. The fact that f has 
finite norm can be proved directly by considering a sequence of closed sets that fill 
up E, X E, [10]. A second proof can be made by considering the space of functions 
of finite norm but which need not be analytic, and by using the theorem that L2 
convergence implies almost everywhere pointwise convergence [10]. 

The proof that L2 is a Hilbert space is similar to the proof that L2(E,) is a 
Hilbert space and is omitted. If { pr(z) oo o is a complete orthonormal sequence in 
L2(E,), then it follows that fPr(Z)p,(W) } r,8 is an orthonormal sequence in L2. The 
proof of the completeness of this sequence is analogous to that given in Courant- 
Hilbert [11] for a real inner product space. Q.E.D. 

It should be noted that the analogous theorem holds for the more general space 
L2(Ep X - - - X E,) = {f(z): f is analytic in the k complex variables z = (zl, * , Zk) 

and f JfEpX...XEp I f(z)12dvxdv, exists}, where z = x + iy, x = (xi, I Xk) I 

y = (Y1, * * Yk), dvx = dx1 ... dxk, and dvy = dy1 ... dyk. A generalized Cauchy 
formula yields an inequality of the form I f(z) < : w II f I l, where z is the vector 
(Zl, * * *, Zk) and w depends on the distance from z to the boundary of Ep X ... X Ep 
but not onf. Hence, point functionals are bounded, and the rest of the proof proceeds 
as before. The complete orthonormal sequence is {pr,(Zl)pr,(z2) .* *pr(Zk) }rp.. **rk=?- 

3. Bounded Linear Functionals Defined on L2. In the cubature methods to be 
described, we need the representers of certain bounded linear functionals and the 
norms of these functionals. Since point functionals are bounded in L2, we note that 
L2 has a reproducing kernel function of the form 

00 

(2) K(z, w; s, t) = E hk(Z, w)hk(S, t), 
k-0 

where z, w, s and t are complex variables and I hk } is a complete orthonormal 
sequence in L2. 

THEOREM 2. Let I hk} Ik.o be a complete orthonormal sequence for L2, and suppose 
that L is a bounded linear functional on L2. Then the representer of L and its norm 
are given by the following equations: 
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co 

(3) h (z, w) = fi hk(z, w)L(hk), 
k-O 

(4) JILI12 = E IL(hk) 12. 
k-O 

Proof. Equation (4) holds for a bounded linear functional in any Hilbert space 
in which {hk I is a complete orthonormal sequence. The proof of Eq. (3) is analogous 
to that given by Davis [14] for functions of one complex variable. By using the 
fact that norm convergence implies uniform convergence on closed subsets of 
Ep X Ep and by making a useful choice of Fourier coefficients, Bochner and Martin 
show that Ek_o I hk(Z, W) 2 < W.2 for (z, w) a distance of at least r from the boundary 
of E. X E., where w. depends only on r. From this inequality it can be shown that 
the function K defined by Eq. (2) is analytic in each pair of variables and that it 
has the reproducing property 

f(s, t) = (f(z, w), K(z, w; s, t)) 

where the inner product is taken with respect to (z, w). The representer of L is 
determined as follows: L[f(s, t)] = (f(z, w), L[K(z, w; s, t)]) = (f(z, w), h(z, w)) 
where h(z, w) = L(8, t)[K(z, w; s, t)] is the representer of L. The subscript (s, t) 
means that L is applied to K(z, w; s, t) considered as a function of (s, t) only. Since 
the reproducing kernel converges uniformly and absolutely in closed subsets of 
Ep X Epy 

L(8, t), Ehk(z, w) hk(s, t = hk(z, w)L(8,t)[hk(s, t)] 
k k 

which is Eq. (3). Q.E.D. 
If we want to consider functions of n complex variables, then we write the re- 

producing kemel as 

(2') K(z; s) = Ehk(z)hk(S) 

where z and s are n-dimensional complex variables. The representer of L is given 
by 

(3') h(z)= Ehk(z)L(hk) 

and Eq. (4) holds as it is. 

4. Application to Cubatures. Theorem 2 is used to obtain a bound on the cuba- 
ture error as follows: Let 

(5) Rn(f) = f f(x, u)dxdu - E A f (Xk, Uk) 

forf in L2. Then I1Rn(f)I ? IIRnII 2IfII, by the definition of the norm of Rn, and 
since R. is bounded in L2, I IRn II is finite. Let us assume that we have some par- 
ticular function f in L2 and a bound on its norm, I If I I < r for some r, and let Sr 
denote the set of g in L2 such that g11 ? r. Then the inequality 
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(6) JR.(g)J ? _IRnJ1Ir 

is sharp on S,; that is, it holds for all g in S, and is achieved by at least one of 
them. Davis' idea, for a similar Hilbert space, was to use the inequality (6), with 

R. computed by Eq. (4), where R. is determined by the cubature rule used. 
It should be noted that the functional LT(f) = f fT f is bounded on L2 if T is 

a closed subregion of E, X E. (This can be proved by arguments similar to those 
in Davis [14] for the one-dimensional case.) In particular, if T is a closed real sub- 
set of E, X Ep, then LT is bounded, so that the cubatures of interest need not, in 
principle, be restricted to rectangular regions. The limitation on T, in practice, is 
that it must be possible to calculate LT(pTp8), where prps is a member of the com- 
plete orthonormal sequence in L2. 

In order to obtain the needed formulas for Rn as defined in (5), we note that 

co 

(7) IJRn 1J2 = JRn(pr(Z)ps(W)) 12 
r, s=O 

where pr(Z) = 2{(r + l)/[7r(pr+l - 
p-r-l)]1}12Ur(Z), r = 0,1, *.. I, and Ur(z) is the 

rth Tchebycheff polynomial of the second kind. This formula can be rewritten as 
n 2 

(7') ||Rn||2 = a a(r, p)a(s, p) I3(r)f(s) - E AkUr(Xk)Us(Uk) 
r,s k=1 

where a (r, p) = 4(r + l)/[7r(pr+l - p-r-l)] and ,8(r) = [1 + (-1)r]/(r + 1), 
r = 0, 1, *. .. Thus I IRnl can be computed once and for all for any given set of 
cubature weights Ak and base points (Xk, Uk). 

The generalization of this method to higher dimensions is not difficult. Let I, 
denote the hypercube lXkl < 1, k = 1, * * *, 1. For i-fold integral fuI f(x)dx, 
x = (x1, *, xI), we use a cubature of the form Ek=l A kf(xk) where x is i-dimen- 
sional. The expression for I IRni 12 becomes 

E IRn [prj(Z1)Prj(Z2) * * *Prl (ZI)]12 
rj,r2,*-- ,rj-O 

where the prj(z) are the appropriately scaled Tchebycheff polynomials of the 
second kind. 

The bound on IRn(f) I given by Eqs. (6) and (7) have been calculated for in- 
tegration over the two-dimensional square -1 < x, u < 1 for certain known 
cubature rules. These numerical results are given in Section 9. 

We noted that formula (7) holds for numerical integration over more general 
regions than the square, if Rn is redefined appropriately. That is, if the desired 
integral is fi fT f over the real two-dimensional closed and bounded region T, then 
formula (7') is correct if ffT Ur(x) Us(u)dx du is substituted for f(r)fl(s) in (7'). 

5. Cubatures with Remainders of Minimum Norm. The idea is to minimize 
I I Rn I in Eq. (7') by an appropriate choice of the weights Ak and, sometimes, the 
base points (Xk, Uk). We remark that, so long as the Ak and (Xk, Uk) are considered 
as being in some compact set in complex 3n-dimensional space, I IRn II has a (local) 
minimum. Minimization with respect to the Ak yields the following system of 
equations: 
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() a(r, p)a (s, p) [ (r), 1(s) - E A lUr (Xl ) Us (U1)] Ur (Xk) Us (Uk) = 0, 
(8) r,s 

k= 1, * ,n. 

Minimization with respect to the Xk and Uk yields the following systems: 

a (r, p) a (s, p) 0 (r),B (s) - X, AIUr(xl)Us(U) ]AkUr' (Xk) = 0, 
r,s I 

( a(r, p) a(s, p)[/3 (r)3 (s) - AlUr(xl)Us(ul)]AkU,'(uk) = 0, 

k= 1, *,n. 

If the points are assumed given, then only system (8) is to be solved and, more- 
over, it is a linear system in the Ak, so that it might appear that there would be 
comparatively little computational difficulty. The numerical results in this paper 
are only for this linear case, and it has turned out to be difficult to sum the double 
series involved accurately. This point, as well as a solution of the nonlinear case 
(i.e., systems (8) and (9)), will be considered by the author and Steven L. Shrier 
in a forthcoming paper which will deal with the computational aspects of the 
minimum norm (MN) cubatures. We only remark here that the main computa- 
tional difficulties that arise in the solution of (8) are the difficulties in summing the 
infinite series and the relative instability of the coefficient matrix for large p. These 
two factors work against one another, since the series are easier to sum (i.e., re- 
quire fewer terms) for larger p. 

6. Asymptotic Properties of the MN Cubatures. Let RnMN denote the error func- 
tional corresponding to the MN cubature (in two variables) with n points, and let 
RnG denote the error functional corresponding to the cross-product rule G formed 
from any two Gaussian rules, G1 and G2, such that the number of points in the 
cross-product rules is greater than or equal to n. The next theorem gives a bound 
on I IRnGI I in terms of n. 

THEOREM 3. For the space L2, 

00 2 
||RnGI12 < E < a(2)cs p6(s) ] 1/2 

r,s=O; r,s even r + 1 y(N2)[a(s, 

1/2~~~~ 
+ 2,y (N1) [a (r, p)i ,(r) ] (s + 1) } 

where 

n = N-N2, a(s, p) = 4(s + 1)/[ir(ps+l - -8-1 

ii(s) = { (s + 1)[(s + 1)2 -1] *. . [(s + 1)2 -(2N2)2]}2 
and 

(22N +1 f (N!)2 2 1 
(2N + 1)(2N)! I (2N)! J .3.. (4N + 1) 

Proof. By Eq. (7) I!Rn G12 = E IRnG(pr(Z)p8(W))12. RnG(pr, P8) 

fpf prp -QG(prp8), where QG(f) = 1fN1 Y2.1 A jBj(xi, uj), Ni being the num- 
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ber of points corresponding to rule G6, i = 1, 2, and Ai) Bj, xi, uj being the ap- 
propriate weights and base points for the (one-dimensional) Gaussian rules G6 and 
G2, respectively. 

RnG (prps) = f Pr P8- EA ipr(xi) E Bjp8(uj) 
i j 

= fPr{f P8 E Bip8(uj)} + f Pr E B,p8(uj) 

- Aipr(xi) EB,p8(uj) 
ij 

= grR2(p8) + R' (pr) E B,p8 (uj), 

where Ri is the error functional corresponding to G6, i = 1, 2, and Or = 
[1 + (-1)r]/(r + 1), r = 0, 1, * - . (We observe that an analogous expression 
can be derived by adding and subtracting the corresponding terms in the other 
variable above.) Now 

(10) IRnG(prp8)1 _< 3rIR2(p8)1 + 21R'(pr)I max lp8(u,)I 

where we have used the fact that the Gauss weights are positive and add up to the 
length of the interval. We now note the fact that the Gauss points are in [-1, 1] 
and that the bound I U,(x)) < r + 1 holds for x in [-1, 1]. The author [7] has 
previously obtained a bound on IR(pr) , r = 0, 1, *.*, where R corresponds to 
an N-point Gauss rule, and a substitution of it into inequality (10) yields the re- 
sult stated in the conclusion. Q.E.D. 

In order to make the bound on I IRn I given by Theorem 3 more meaningful, 
we remark that, by using fairly crude estimates, -y(N) can be shown to be bounded 
by 22NN-4N-5 . 

We also remark that the proof of Theorem 3 is somewhat similar in spirit to 
results given by Stenger [27]. 

Since I IRnMNI I <I IRnG I1, we note that Theorem 3 also yields a bound on 
I RNII|. It is an open question as to how conservative this bound and the one of 
Theorem 3 are. 

7. MN Rules for Other Rectangles. As mentioned earlier, formulas can be gen- 
erated over other regions than the basic square -1 < x, u < 1. For use in com- 
posite rules, we mention an alternative approach for generating MN formulas for 
other rectangles than those tabulated for the basic square. If we consider 

fb {d n ] ] f (s, t)dsdt ~ Bkf (Sk, tk) , 
a c k=1 

then it can be shown that Bk = [(b - a)/2][(d - c)/2]Ak, Sk = [(b - a)/2]xk + 

(a + b)/2 and tk = [(d - C)/2]Uk + (c + d)/2, where the Ak, Xk and Uk refer to 
MN rules with the basic square. Also, if we denote by Rn(a, b; c, d) the error in 
approximating fab fdf, then 

IRn(a, b; c, d)I _ [(b - a)/2][(d - c)/2]IIRnII 11911 l 
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where II R. I refers to the norm of the functional on the basic square and the func- 
tion g(z, w) is defined by 

(b-a a + b d-c c + d g(zw) fV2 Z+ 2 ' 2 w+ 2 

for (z, w) in Ep X Ep. 

8. Convergence of the Minimum Norm Weights. For the one-dimensional case, 
the following theorems are known [7]: For a fixed n, if the quadrature nodes are 
fixed, then the AkMN converge as p -0oo to the weights of the corresponding in- 
terpolatory quadrature. If the nodes are variable, then the weights and points of 
the minimum norm quadrature converge to the weights and points of the corre- 
sponding Gaussian quadrature. The theorem that follows generalizes the first of 
these two theorems. It is stated for two dimensions, but can be generalized to m 
dimensions, m > 2. 

THEOREM 4. Given N points in the square -1 < x, u < 1, such that N is of the 
form 

d +2 
\2 

and there exist A, *, AN such that the corresponding cubature is of precision d, 
then the minimum norm cubature weights A ,MN have the property that 

AiMNAi as p 0o, i= 1, ..,N. 

Proof. The following result will be implied by a lemma: lim IRN(Ur U8) = 0 
as p -+ oo, 0 ! r + s ? d. We recall that U, is a polynomial of degree r, and so 
the above is equivalent to the following system of equations: 

E A sm= aoo + Eoo(p)= moo 

Ei A X xN = ailo + elo(P) = mJO 
E A Xmui = aoc + Eol (p) mol 

,A i u = aOd + EOd (P) EMOd 

where aij is f fix, xii, eij is RN(Xiui) and so all the Eij(p) 0 as p oo. The 
coefficient matrix M of the AiMN is nonsingular by hypothesis and so AMN = 
M-1m, where AMN is the vector of A iMN and m the constant vector of the above 
system. Hence, lim AMN = M-1 lim m = M-a = A, where a is the vector of aij 
and A is the vector of interpolatory A i. Q.E.D. 

Remark. A result similar to Theorem 4 holds for any region for which an in- 
terpolatory cubature can be defined. 

LEMMA. If the hypotheses of Theorem 4 hold, then lim pd-(r+8) * IRN(UrU,) 12 = 0 
as p -+ oo, for all nonnegative integers r and s such that 0 _ r + s < d. 

Proof. Let us denote by RNI the remainder of the interpolatory cubature based 
on the given N nodes, and recall that it has precision d. Then IRNMN 2 I IRN'I 2 

implies that 
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4 (K) (r + 1) (s + 1) IRNM(UrUs)I 

T=O 8=0 \7r/ (T+p1 -T-r1)(Ps+l - s-1) 

< 
0 4 2(r + )(s + )IRN (UTUS)I2 

s=0 r=d-s+l \X7r (PT+l - 

We multiply by pd - p-d and delete all but the first term on the left-hand side. 
On the right-hand side, we see that the lowest-order term in p is essentially l/p, 
so that the limit of the right side is zero, as p - oo. Therefore, 
lim (pd - p-d) IRNMN(1) 12 = 0. 

We next take r = 1, s = 0, multiply by pd-1 - p-d+1 and, proceeding as before, 
we obtain 

( 
d-1 - p-d+l)|RNMN(UUo) 12> ? as p - oo. 

The general result is thus seen to be 

( d-(T+S) _p-d+(r+s)) IRNMN(UrU,) 12 > as p - oo 

and this holds for all r and s such that 0 < r + s < d. Q.E.D. 
Theorem 4 has an interesting application to the computationally important 

question of whether a minimum norm cubature has positive weights. 
COROLLARY. Assume the hypotheses of Theorem 4. Then, for large enough p, the 

minimum norm weights have the same sign as the interpolatory weights. 
This corollary says that, for example, the one-dimensional minimum norm 

quadrature with variable base points has positive weights, for large enough p, since 
the Gaussian weights are positive. 

9. Tables and Examples. Two four-point rules on the square -1 < x, u 1 
are considered. These are the cross-product trapezoidal rule T2 X T2 and the cross- 
product Gaussian rule G2 X G2, to which Tables 1 and 2 refer, respectively. Both 
of these rules are fully symmetric rules; that is, symmetric points are included and 
symmetric points have the same cubature weight. For a four-point rule, this means 
that there is only one weight and, for T2 X T2 and G2 X G2, this weight is 1.0. 
(We remark that for a fully symmetric region and fully symmetric base points, the 
minimum norm weights are fully symmetric.) The corresponding minimum norm 
weight is denoted by AMN. Two functions are considered, fi(x, u) = ex+u and 
f2(x, u) = cos x cos u. The definitions of the remaining symbols in Tables 1 and 2 
are the following: a is the semimajor axis of the ellipse E,; Ei is IR4MN(fi)!; Fi is 
an upper bound on I iffill; Bi is I ?R4MN I * Fi, i = 1, 2. 

One nine-point rule is considered, namely, Lyness' rule [15, p. 141]. This rule 
is fully symmetric with generating points as shown in Table 3. The minimum norm 
weights are listed in order corresponding to the generating points and the symbols 
in Table 3 correspond to those in Tables 1 and 2. 

For these examples, a bound on I ffI is found by means of the inequality 
I If ? I sup ff(z, w) l ,rab where the sup is over the region E, X E. However, for 
these two examples, the functions are also analytic on the boundary of E, X E, 
and so the sup can be changed to a max, which is over the boundary points only. 
(This use of the maximum modulus theorem is frequently a considerable compu- 
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tational aid.) Additional methods of bounding can be based on the work of 
Davis [13]. 

As mentioned in Section 5, more substantial numerical results will appear in a 
future paper. 

10. Conclusions. The error bounds of the Davis type, including the minimum 
norm cubatures, are probably more practical than the standard error bounds, be- 
cause they do not involve bounding various partial derivatives of the integrand. 
However, these bounds are only applicable to functions that are analytic on the 
region of integration and that are bounded in norm over some cross-product of 
ellipses containing the region of integration. Sard's error estimates are applicable 
to a much wider class of functions. (This is, of course, a reason for conjecturing 
that the Davis-type estimates will be better for analytic functions.) 

We state one question that has arisen from this work. In the one-dimensional 
case, the minimum norm quadratures have been shown to converge to the Gaussian 
quadratures as p -- oo (i.e., for a fixed n, the weights and points of the minimum 
norm rules converge to the corresponding weights and points of the Gaussian rule). 
However, the algebraic argument leading to this result breaks down in more than 
one dimension, although partial results have been obtained, as stated in Theorem 
4, and so the question is: what is the asymptotic behavior of the cubature points? 

Acknowledgments. The author is grateful to Philip J. Davis for setting up the 
year at Brown University during which this research was completed. The author 
is also pleased to acknowledge Steven L. Shrier for carrying out the calculations. 

This research was supported by the National Science Foundation under Grant 
GP-5906 to the University of Utah and by the Office of Naval Research under 
Contract Nonr 562(36) to Brown University. A part of the computing time was 
made available by the National Science Foundation under Grant GP 4825 to Brown 
University. 

Brown University 
Providence, Rhode Island 02912 

University of Utah 
Salt Lake City, Utah 84112 

1. R. E. BARNHILL, Numerical Contour Integration U. S. Army Mathematics Research 
Center Report No. 519, Madison, Wis., 1964. 

2. R. E. BARNHILL, "Complex quadratures with remainders of minimum norm," Numer. 
Math., v. 7, 1965, pp. 384--90. MR 32 #8497. 

3. R. E. BARNHILL & J. A. WIxoM, "Quadratures with remainders of minimum norm. I," 
Math. Comp., v. 21, 1967, pp. 66-75.. 

4. R. E. BARNHILL & J. A. WIxoM, "Quadratures with remainders of minimum norm. II," 
Math. Comp., v. 21, 1967, pp. 382-387. 

5. R. E. BARNHILL, 'Optimal quadratures in L'(Ep). I," SIAM J. Numer. Anal., v. 4, 1967, 
pp. 390-397. 

6. R. E. BAUNHLL, "Optimal quadratures in L(E,p). II." SIAM J. Numer. Anal. (To 
appear.) 

7. R. E. BARNHILL, "Asymptotic properties of minimum norm and optimal quadratures." 
(Submitted for publication.) 

8. S. BERGMAN, The Kernel Function and Conformal Mapping, Math. Surveys, No. 5, Amer. 
Math. Soc., Providence, R. I., 1950. MR 12, 402. 

9. G. BIRKHOFF & C. R. DEBOOR, "Piecewise polynomial interpolation and approximation," 
Approximation of Functions, edited by H. L. Garabedian, Elsevier, Amsterdam, 1965. MR 32 #2789. 

10. S. BOCHNER & W. T. MARTIN, Several Complex Variables, Princeton Math. Series, Vol. 
10, Princeton Univ. Press, Princeton, N. J., 1948. MR 10, 366. 



ERROR ANALYSIS FOR NUMERICAL MULTIPLE INTEGRATION. I 109 

11. R. COURANT & D. HILBERT, Methods of Mathematical Physics, Vol. 1, Interscience, New 
York, 1953. MR 16, 426. 

12. P. J. DAVIS, "Errors of numerical approximation for analytic functions," J. Rational 
Mech. Anal., v. 2, 1953, pp. 303-313. MR 14, 907. 

13. P. J. DAVIS, "Errors of numerical approximation for analytic functions," Survey of 
Numerical Analysis, McGraw-Hill, New York, 1962. MR 24 B1766. 

14. P. J. DAVIS, Interpolation and Approxination, Blaisdell, New York, 1963. MR 28 #393. 
15. P. J. DAVIS & P. RABINOWITZ, Numerical Integration, Blaisdell, New York, 1967. 
16. P. J. DAVIS & P. RABINOWITZ, "On the estimation of quadrature errors for analytic 

functions," MTAC, v. 8, 1954, pp. 193-203. MR 16, 404. 
17. M. GOLOMB & H. F. WEINBERGER, "Optimal approximation and error bounds," On 

Numerical Approximation, edited by R. E. Langer, Proceedings of a Symposium, Univ. of Wis- 
consin Press, Madison, Wis., 1959. MR 22 #12697. 

18. M. GOLOMB, Lectures on Theory of Approximation, Argonne National Laboratory, Argonne, 
I11., 1962. 

19. P. C. HAMMER & A. H. STROU, "Numerical evaluation of multiple integrals. II," MTAC, 
v. 12, 1958, pp. 272-280. MR 21 #970. 

20. P. C. HAMMER, "Numerical evaluation of multiple integrals," On Numerical Approxi- 
mation, edited by R. E. Langer, Univ. of Wisconsin Press, Madison, Wis., 1959. 

21. V. I. KRYLOV, Approximate Calculation of Integrals, translated from Russian, Macmillan, 
New York, 1962. MR 26 #2008. 

22. J. N. LYNESS, "Symmetric integration rules for hypercubes. I: Error coefficients," Math. 
Comp., v. 19, 1965, pp. 260-276. MR 34 #952. 

23. J. MEINGUET, "Methods for estimating the remainder in linear rules of approximation. 
Application to the Romberg algorithm," Numer. Math., v. 8, 1966, pp. 345-366. MR 33 #8102. 

24. A. SARD, Linear Approximation, Math. Surveys, No. 9, Amer. Math. Soc., Providence, 
R. I., 1963. MR 28 #1429. 

25. D. D. STANCU, "The remainder of certain linear approximation formulas in two variables," 
SIAM J. Numer. Anal., v. 1, 1964, pp. 137-163. MR 31 #1503. 

26. F. STENGER, "Bounds on the error of Gauss-type quadratures," Numer. Math., v. 8, 
1966, pp. 150-160. MR 33 #5120. 

27. F. STENGER, "Error bounds for the evaluation of integrals by repeated Gauss-type 
formulae," Numer. Math., v. 9, 1966, pp. 200-213. 

28. A. H. STROUD, "Quadrature methods for functions of more than one variable," Ann. 
New York Acad. Sci., v. 86, 1960, pp. 776-791. MR 22 #10179. 

29. A. H. STROUD & D. SEcREsT, Gaussian Quadrature Formulas, Prentice-Hall, Englewood 
Cliffs, N. J., 1966. 

30. R. A. VALENTIN, A pplicatios of Functional Analysis to Optimal Numerical Approximation 
for Analytic Functions, Ph.D. Thesis, Brown University, Providence, R. I., 1965. 

31. H. YANAGIHARA, "A new method of numerical integration of Gaussian type," Bull. 
Fukuoka Gakugei Univ. HII. v. 6, 1956, pp. 17-24. (Japanese) MR 26 #5729. 

32. G. HXMMERLIN, "Uber ableitungsfreie Schranken fur Quadraturfehler," Numer. Math., 
v. 5, 1963, pp. 226-233. MR 28 #1756. 

33. G. HXMMERLIN, "t'ber ableitungsfreie Schranken fur Quadraturfehler. II. Erganzungen 
und M6glichkeiten zur Verbesserung," Numer. Math., v. 7, 1965, pp. 232-237. MR. 32 #1899. 

34. G. HAMMERLIN, "Zur Abschaitzung von Quadraturfehlem fur analytische Funktionen," 
Numer. Math., v. 8, 1966, pp. 334-344. MR 34 #2179. 


	Cit r125_c127: 


