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1. Introduction and Background. The primary objective of this paper is to 
present the Lawson algorithm for computing best Tchebycheff (L.) approxima- 
tions in the general mathematical literature. Other objectives are to present some 
extensions of the algorithm, to discuss some possible modifications of it and to re- 
port on some computational experience. 

This interesting algorithm has been proposed on heuristic grounds by several 
individuals, but the only thorough analysis of it is contained in Lawson's thesis [1]. 
A simplified version of that analysis is to appear in [3]. Thus we do not present any 
of Lawson's proofs here, but only state some of his results. Lawson's original algo- 
rithm computes best Tchebycheff approximations as the limit of a special sequence 
of best weighted L, approximations with p fixed. The interesting case is for p = 2. 
We extend this algorithm to compute L, approximations for 2 < p < 0o as the 
limit of best weighted L2 approximations. This extension is defined and convergence 
established in the next section. The final two sections discuss some modifications of 
this algorithm and report on some computational experience with both the original 
and extended version. In particular, a useful convergence acceleration scheme is pre- 
sented for the original algorithm. 

The possibility that such algorithms might exist follows from the work of 
Motzkin and Walsh [2]. Their work in this area is presented in detail in [3]. The 
following theorems summarize some results pertinent to this paper. 

THEOREM 1 (MOTZKIN AND WALSH). Let {f i(x) } be a Tchebycheff set** and define 

n 

L(A, x) = ai(x) 

where A denotes the parameter vector (a,, a2, . . . an). 

Then, given f(x) continuous on [0, 1] and 1 < q < p < oo, we have three pairs of 
identical sets: 

1. {A IL(A, x) is a best weighted L, approximation to f(x) on [0, 1]} 
A IL(A, x) strongly interpolates f(x) on [0, 1]1 

2. {AIL(A,x) is a best weighted L1 approximation to f(x) on [0, 1] } 
{A L(A, x) weakly interpolates f(x) on [0, 1]} 

3. {A IL(A, x) is a best weighted L, approximation to f(x) on [0, 1] 
{A IL(A, x) is a best weighted Lq approximation to f(x) on [0, 1]. 

THEOREM 2. The conclusions of Theorem 1 are valid if the interval [0, 1] is re- 
placed by a finite point set X C [0, 1] upon which the approximation is made. 
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** The set {q4i(x)}, i = 1, 2, *. . , n, is a Tchebycheff set if the matrix (ki(x)), i, j = 1, 2, * * *, 

n is nonsingular for arbitrary distinct xj E [0, 1]. 
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Actually only the third result is pertinent here, but the first two results are pre- 
sented as they are not widely known among numerical analysts. L(A, x) is said to 
strongly (weakly) interpolate f(x) n times if 

(- 1) [L(A, xi) - f(xi)] > 0 (or (-1) '[L(A, xi) - f(xi)I 0) 
for some n + 1 points xi in the interval [0, 1]. 

From the third conclusion of these theorems, we see that we can compute best 
Tchebycheff approximations by computing a certain weighted least-squares ap- 
proximation. This is inviting, as the second computation is substantially simpler 
than the first. Furthermore, there are several areas (vector-valued functions and 
functions of a complex variable) where there are no known algorithms for Lo: ap- 
proximation, but where least squares can be used. Lawson's algorithm consists, 
then, of generating the required weight function. We only consider approximation 
on a finite point set X. 

We wish to approximate the values f(x ) = f j, i = 1, 2, .., 7m, on the set 
X = {xili = 1, 2, *.*, m} by 

n 

L(A, x) E ajoj(x) 
j=1 

where {f j(x) } is a Tchebycheff set. 
Lawson's Algorithm for Lo. Approximation. We define a sequence of weight func- 

tions wk(xi) = wt with Ex wt k 1 and corresponding approximations L(Ak, x) 
as follows. Choose wil > 0 arbitrary. 

a. L(Ak, x) is the best L2 approximation to f(x) on X with the weights wik. 
b. wik+1 = wi kf(xi) - L(Ak,x i)I/ EXWikl f(xi) - L(Ak,xi)|. 
THEOREM 3 (LAWSON). The sequence L(Ak, x) converges to L(Ao, x), which is the 

best Loo approximation to f(x) on a set X2 C X. The sequence { ak 

_ _ ~~~~~~~~1/2 
ak= E wi [f(x) - L(Ak, x)]2 

is monotonically increasing (strictly so unless convergence takes place in a finite num- 
ber of steps), and 

Lim o- = max f(x) - L(Ao, x) - 
k--+oo xEX2 

THEOREM 4 (LAwsON). If X2 is a proper subset of X, then the algorithm may be re- 
started with 

VJil=(1-X) Lim wi + Xu(x), 0 X < 1, 
k-4oo 

where u (x) = for x $ z and u(z) = 1, where z E X - X2 and lf(z) -L(Ao, z) I> > . 
For X sufficiently small al > v* and after a finite number of restarts, we obtain the 
best L. approximation to f(x) on X. 

In practice we use the last weight function actually calculated rather than 
Limk,. w k. The fact that the algorithm must be restarted sometimes is not as 
serious as it first appears, as it is very rare that this occurs. The proofs of these 
theorems are not easy, and it is an open question whether they remain true if the 
interval [0, 1] replaces the finite set X. 
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2. The Lawson Algorithm for Lp Approximation. We define a sequence of weight 
functions WA with >Sx wi'k = 1 and corresponding approximations as folows. 
Choose w 1 > 0 arbitrary. 

a. L(Ak, x) is the best L2 approximation to f(x) on X with the weight wk. 
b. w (w kje kl)(-2)/(p-l) / >x (wik"lek1)(p-2)/(p-l) where eik = ek(xi) = f(xi) 

- L(Ak, xi). 
Note that the formula in b restricts us to p > 2 and, that as p tends to infinity, 

we obtain Lawson's original algorithm. 
We now establish five lemmas in preparation for the proof of the convergence 

theorem. We introduce the notation 

[k w jle l /[Z (w k)p/(p-2)] (p2)/2p 

All summations are over the set X unless otherwise indicated. Define Wk = 

{XilWtk > 0}. 

LEMMA 1. If (a1 > 0, then 0-k > 0 for all k. 
Proof. The proof is by induction; i.e., assume that ak > 0. This implies that Wk 

is not empty. If Wk+l = Wk, then no function L(A, x) agrees withf(x) on Wk+1 = Wk, 
and hence 0.k+1 > 0. If Wk - Wk+1 is not empty, then it is seen that L(Ak, x) is a 
best L2 approximation to f(x) on Wk+l as well as Wk with the weight wk(x). Again, 
Sk > 0 implies that f(x) is not of the form L(A, x) on Wk+1 and 0.k+1 > 0. This con- 
cludes the proof. 

This lemma implies, by the Tchebycheff set assumption, that nWk contains 
at least n + 1 points. For the remainder of this discussion we assume that a' > 0. 

LEMMA 2. If wt*+1 = wIA for all i, then 0k+1 = alk, otherwise ak+1 > ak. 

Proof. We introduce the inner product notation 

(f, g)w = , w(xi)f(xi)g9(xi) 
The first assertion is clear, therefore we assume wk+l(x) 96 wk(x). Since 

E w k+leik+lij(xi) = 0 forj= 1,2, * 

we have 

k+1 E fie k+lWik+l 

(1) f [E Ik+s | Wi +j13 1/2[ I? (w k+l)P/(P-2)] (p-2)/2p 

Consider gi = eik+l/[jetk+1j2wik+l]l'2 and recall that it is a property of least- 
squares approximation that 

1. (g, g),Wk+l = 1. 
2. g ? [,oil * * * X On] in the L2 norm with weight wk+l. Here [01, * , fn] denotes 

the linear subspace spanned by the {4j }. 

3. g maximizes E fig:wik+1 over all g satisfying 1 and 2. Since E 41(xi)ekwik 
= Oforj = 1,2, *..,n,wehave 

E kj(xi)(eikwi/wi k+)wik+1 = 0, forw k+l > 0 

Note that with 4 cj(xi), 

0O= ( peiewi = 1 ckjetwik = E (pie twtk 
W Wk+1 

Let 
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= (e ikw k/w ik+l)/ E (eikWk) 2/wi1 for wik+l > 0, 

= 0 otherwise. 

Then g satisfies 1 and 2 above. Hence, replacing g by 1 in (1) does not increase the 
left-hand side. Thus we have 

(2) k+1 > Efiei Wi 
([, (e W wk) 2/w k+ 1/2[ (W k+l)P/(p2)] (p-2)/2p- 

Now substitute for w k+' in the denominator terms of (2) as given by the recurrence 
relation to obtain 

[ (Wik+l)p/(p-2)](p-2)/2p - [ (Wik eikf)p/(p-1)] (p-2)/2p 

[ (W ik I1 ep i Ip) 1] 

and 

[ (eiw k) ]Wk = [ (ewk)P/(p-1)] 1/2[ (e W kw)(p-2)/(pl)l 1/2 

Combining these factors, we see the denominator of (2) is 

(3) ~~~~~~~~[ E (wik |le ik 
I )P/(p1) I(P- 

1) /p 

We apply H6lder's inequality 

a aib i a E ar] 1/rE b bi] 1 /8f 

with 

ai= leikIP/(p-1)(Wik)p/2(p-1) r = 2(p - 1)/p, 

bi = (wik)P/2() s = 2(p - )/(p - 2) 

and obtain 

[E ( kl klo/(Pl) (l-)/P < 
E I e1|2W k] 

/2 
(Wi 

-2 
) p ] 

2 

with equality if and only if there is an a > 0 such that 

leikl2wik = a(wi k)P/(P-2) for all i . 

That is to say, if and only if 

lei kl = Va (Wik)1/(p-2) for all i 

But if this were the case, we would have 

k+1 (wik lei kl )(p-2)/(p-1) W ik k 

E (Wkle ikl)(p-2)/(p-1) E Wk k 

which contradicts the assumption that wk+l(x) F6 wk(x). Hence we have strict in- 
equality and 

k+1 > E~~Ifie iW ik k 
LEMMA 3. Let L )e t 2wt k1/2[ p i to/(p-2) (p-2)/2p o 

LEMMA 3. Let L(A*, x) be the best Lp approximation to f(x) on X. Then 
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ak < * = [ fi - L(A*, xi) fP]lP. 

Proof. We have 

( k)2 = E: WikI e ikl2/[I (wik)p/(p-2)](p-2)/p 

< X, wi Ifi - L(A*, xi)f2/[E (wik)p/(p-2)]'p-2)/p 

Again we apply Holder's inequality with 

ai= wik, r = p/(p-2), 

bi = If X-L(A*, Xi) 12 ,s = p/2, 

and obtain 

a'k [E fi - L(A*, xi)|P]ll/P[ (w k )P/p-2)] (p2)/2p/[E (wk)p/(2)] (2) /2p 

For the next lemma we set 

a*= Lim o-k 

and define the set Wo as follows: All of the sequences w -k lie in a bounded region 
of Em. Therefore, { w A } has one or more convergent subsequences as k tends to m. 
Pick one such subsequence (also denoted by { w A }) and set 

Wio= w0(xi) = Limwik, Wo = {xlw0(xi) > O} 

LEMMA 4. Let L(Ao, x) be the best weighted L2 approximation to f(x) on Wo (and 
hence on X). Then oO > 0 and 

Lim L (Ak, X) = L(Ao, x) 

Proof. It is known [1] that the error of the best L2 approximation is a continuous 
function of the weights and hence so is -k. Thus 

a= a* = Lim k. 

We have alI > 0 by assumption, and it follows from Lemma 1 that 0.0 > 0. Since 
{40(x) } is a Tchebycheff set, the set Wo must contain at least n + 1 points. This 
implies that the best weighted L2 approximation to f(x) on Wo is also a continuous 
function of the weights, and the lemma is established. 

LEMMA 5. L(Ao, x) is also the best Lp approximation to f(x) on Wo and 

_ _ l~~~~~~~~/p 
a*- , [f (xi) - L(Ao, xi)]P 

wO 

Proof. We start the algorithm with w .0 = w0(xi). Then by Lemma 2 either 
w'(x) -w?(x) or 0.1 > a*. We have Limk .Wk(X) = w?(x), Limk 0ak = a.*, and 
ak+1((W k) is a continuous function of Wik. Hence 0.'(wO) = a*, otherwise 0-k does not 
converge to a-*. Therefore wl(x) -w?(x). Thus by the recurrence relation 

(4) wj3' wj (wyOIeiolI) (p2) /(p1) 

W l, (wio)etoe ) (ta2/(pr1) 

We solve (4) for the w,-? to obtain for xj E- Wo 
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(5) Wj= ejolP-2/[ (wi0leio0 
wO 

Now, since L(Ao, x) is the best L2 approximation with weight w?(x) (on both X and 
WO), we have 

E wi?ei?L(A, xi) = 0 for all A. 
wO 

We substitute for wi0 as given in (5) and multiply out the denominator to obtain 

E lei0lp-2ee0L(A, xi) = 0. 
wO 

Since 

lei lp2 2ej = je?olp-1 sgn [ei?] 
we have 

Elee0lp-1 sgn [eij]L(A, x) = 0 for all A, 
wO 

which is precisely the condition for L(A o, x) to be the best Lp approximation to f(x) 
on Wo. This establishes the first part of the lemma. 

We have 

0f = Lim [MI e i K2Wik] 1/2/ [ (w k)P^p/2]I(2)/2p 
k-oo 

We know that ok depends continuously on the weights Wk(x) and hence 

0* = [E le i? 2Wi0]1/2/[J (WiO)p/(p2)I (p2)/2p. 

We substitute (5) into the numerator and denominator of this equation to obtain, 
respectively 

I 1/2 (P-1) /2 

E lei (wolio p-2 

/ (Wipe1) 
Wo Wo 

e I (p-2) /2p [ ] (p-1)/2 

l ei Olp / E (Wi?leiol )(p-2)/(p-1) 

Thus we have 
F _11/2 / - (p-2) /2p F 1/p 

0'* = E eiojP E le)Ip' = E |ejIp 

= r [f (xi) - L(Ao, xi)]]"P. 

This concludes the proof. 
In the last two lemmas we only considered a particular subsequence of {L(Ak, x) 

and its corresponding limit. We now establish the major convergence theorem re- 
lated to the entire sequence {L(Ak, x) }. 

THEOREM 5. The sequence {L(Ak, x) } converges to L(Ao, x), which is the best Lp 
approximation to f(x) on Wo. 

Proof. We first establish that 

(6) Limwik W- =kO. 
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Assume the contrary. Then there is a subsequence, denoted by {iv,'+' - WSv}, 
which converges to a nonzero limit. Let {wI } be a subsequence of { iik } which con- 
verges to w?(x) as in Lemma 5. We know that if the algorithm is started with 

w = w, then we have a2 = a' and w 2 = w ?. Therefore 

Lim wi 1+1 = Lirn (willeilI)(p-2)/(p1)/ E (WiIIeiI )(P-2)I(P-) 
1 00 1 -400 

= (WioIeiol)(p-2)/(1-l)/ (wilei0l)(p-2)/(p-1) = W i0 

Thus for any convergent subsequence of wi, we have that w-k+1 - converges 
to zero, which then must be true for the entire sequence. 

Denote by SW the limit points of {wk(x) } in Em. It is clear that W is not empty, 
closed and bounded, i.e., W is compact. Furthermore (6) shows that W is con- 
nected. We now assert that every w(x) e sW gives the same best Lp approximation 
to f(x). 

The set W may be decomposed into equivalence classes by defining two weight 
functions to be equivalent if they lead to the same approximation. If L(A, x) is a 
best L2 approximation to f(x) with weight w(x), then it is the unique best Lp ap- 
proximation to f(x) on the set WO where w(x) > 0. This follows from Lemma 5. 
Since X is finite, there are at most a finite number of equivalence classes, each of 
which is compact and distinct. Since W is connected, there is at most one such 
equivalence class, and every w(x) EE W gives the same best Lp approximation to f(x). 

To complete the proof we note that {L(Ak, x) } is bounded and hence contains 
convergent subsequences. If there are two such subsequences with different limits, 
then consider the corresponding sequences of weight functions. These sequences 
have convergent subsequences, which, as just established, lead to the same weighted 
L2 approximation. This is impossible and shows that {L(Ak, x) } converges, say to 
L(AO, x). It follows from Lemma 5 that L(Ao, x) is the best L4 approximation to 
f(x) on Wo. This concludes the proof. 

There is a distinct difference between the LOO and L. Lawson algorithms as fol- 
lows. The LOO algorithm tends to drive the weight function wk(x) to zero everywhere 
but at the critical points of the error curve of the best L.X approximation. This 
implies that the analogous set Wo in Theorem 5 does not contain many points. This 
is not the case for the L, algorithm, and normally the set Wo is all of X. However, 
it is possible that the error curve "accidentally" becomes zero at a point xo of X in 
the early stages of the algorithm. This means that this xo does not belong to WO, 
and hence L(Ao, x) might not be a best LP approximation to f(x) on X. 

If this occurs, then the Lawson algorithm can be restarted with a specific choice 
for wl(x) which ensures that larger values for a are obtained. Since X is finite, one 
must obtain L(A*, x) after a finite number of restarts. This is established in 

THEOREM 6. If WT is a proper subset of X, then the algorithm may be restarted with 

WiA - (1 - X)W?(X) + XU(x) 0 ? X < 1t 

where u(x) = Ofor x $ z and u(z) = 1, where z E X - WO and L(A0o z) - f(z) $ 0. 
For X sufficiently small, we have 

1 > 

and after a finite number of restarts we obtain the best LP approximation L(A*, x) to 
f(x) on X. 
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Proof. Let us denote by L(Ax, x) the best L2 approximation to f(x) on X (also 
on Wo U {z }) with the weight function wi. Set 

e = (f (x) - L(Ax, xi)) 

and denote the corresponding a value by 

(X)2 = E wiXleiX12/[E (wiX)P/(Ip2)1(T2)/P 

Now 

2(X) _ ei(z)J2 + (1 - X) ? wioleix 2 

[VP-2) + (1 - X)P/(p-2) ?wo (WiO)p/(P-2)] (p-2)/p 

For X sufficiently small, say 0 < X < Xo, we have that L(Ax, x) and L(Ao, x) are 
arbitrarily close, and hence I el'(z) I > 0. Furthermore, we have 

?Wiolex 12 > ?I wioleiOl2 
wo Wo 

and hence, after manipulation, 

a2(X) > Ew - if0W,lei,? 2 _ _ 
Wo~ (Wio)p/(Ip-2)]_(p2)/p (l + (X/ (1 - W/(2) 

p2 p 

+ Xle'(z)12 
[wo0 (WiO)P/(12)] (p-2)/p (1 + (X/(1 - X))P/(p-2) )(p-2)/p 

> (f*)2 + XV2(X) 

[1 + (X/(1 - X))P/(p2),(p2)/p 

> (a*)2 + XV2(X) 

1 + (p - 2) (X)/pP/1p2) + o(X2P/(P-2)) 

where 

v(X) el l(z)I 

Since v(X) is not zero for 0 < X < Xo and p/(p - 2) > 1, we have, for X sufficiently 
small, 

2(X) > (u*)2 

For any specific choice of X in this range we have that a' = (X), and hence the 
first relation is established. 

Thus the second start of Lawson's algorithm generates another approximation, 
say L(Aol, x), a corresponding al* and W1 where oa* > o*. Since X is finite, there 
are only a finite number of possibilities for the set Wj, j = 0, 1, * * . One of these 
corresponds to the best L, approximation L(A*, x). Since the as* values obtained 
are strictly increasing, the sets Wj are distinct and the last statement of the theorem 
follows. 

3. Modifications and Acceleration of the Lawson Algorithm. One can "acci- 
dentally" set wk(xi) = 0 in both the L. and L, versions of the Lawson algorithm. 
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This might prevent one from obtaining a best approximation, and hence one can 
consider modifying the algorithm (particularly in the early stages) so as to avoid 
this. Two possible modifications are 

(7) w (+1 (x) x) w ((x)(ek(x) |)(p2) /(P-1) e (x) O 0 

w (x), ek (x) = 0, 

or 

(8) wk, ' (x) = wk(x)(lek(X)I)(p2)/(P-1) ek(x) ; 0 

= a(k) , ek(x) =0. 

(The normalizing factors are omitted from (7) and (8) for simplicity.) In (8) one 
might consider for a(k) functions like l/k, 1/k4, 2-k, etc. The convergence proofs 
break down (in Lemma 2) for both of these modifications. In view of the rarity of 
these accidents observed so far, it is probably more efficient to use the restarting 
procedure rather than make such a modification. 

While one wants to prevent setting Wk(X) = 0 by "accident," one is interested 
in the L. algorithm with making wk(x) tend to zero as rapidly as possible except at 
the extremal points of the error curve of the best Loo approximation. At those points 
where le*(x)l is nearly maximum, the corresponding weights do not tend to zero 
very rapidly. Indeed, set 

p* = max [p = le*(x)!/maxxex le*(x)I ,p < 11 

then Lawson reports that the algorithm converges linearly with ratio p*. We also 
have observed this and p* is usually rather close to 1. This is slow convergence and 
leads one to look for convergence acceleration schemes. Modifications which might 
make wk(x) tend to zero faster for the L. case are 

(9) wk+lW (X) = Wk(X)Iek(X)12 

(10) wkl (x) = (wk(x))2 Ie(x) I 

These modifications make Wk(X) tend to zero like (p*)2k and (p*)2k, respectively (if 
the algorithm converges). It has been observed by Lawson and us that (9) some- 
times leads to divergence. However, when it does converge, we observe that it does 
accelerate the convergence. 

We have found the following acceleration scheme effective: 
1. Do 1 steps of the Lawson algorithm. 
2. Set w/' = O if 

Ifi- L(Ak, xi)j _ XkT, where Xk = kl/maXI lf(X) - L(Ak, x). 

3. Go back to step 1. 
One may verify that the convergence proofs of Section 2 are valid if the L, algo- 

rithm is defined by 

(11) w = (Wi k) aleikI/E (Wik)ale ikIl 

where a and ,B are positive and satisfy 

a(p - 2) + = p - 2. 

The choice presented in Section 2 corresponds to 
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a = , = (p - 2)/(p - 1). 

4. Computational Remarks. We first discuss the Lp algorithm. 
A. The method presented in Section 2 was compared to the special case of 

2 = 23 in (11), i.e., 

Wk+1 = (Wikei2)(p-(2/p/E ke2 (W-2)/p 

Our experience indicates that this case converges somewhat slower than the a = 
case. 

B. For typical functions and ranges of p < 20 the algorithm converged so that 

[Z lf(x) - L(Ak, x) IP] /p 

agreed to 5 or 6 digits of the best value within 15 iterations or less. For larger values 
of p, e.g., p = 100, p = 1000 the convergence is slower. 

C. A useful convergence criterion is 

I ( - [E lei I]P)/oJ ? e 

In general we observed that 

[E le kl -[ [ | e*p]i1/p << [E e* IP] 1/p _ k 

For the Loo. case we observed the following. 
A. Without acceleration the convergence is slow, as indicated by Lawson. 
B. For a typical problem involving n = 4 parameters and m = 50 points, the 

acceleration scheme reduced the number of iterations from over 250 to less than 15 
using values of 1 with 1 < 1 < 4. This is for convergence to 7 significant digits. 

C. An increase in the number n of parameters or number m of points increases 
the number of iterations required. Typically, n = 10 and m = 100 required about 
40 iterations for 7 significant digits. 

If one has a reliable least-squares approximation program, then one can write 
and debug a program for either one of these algorithms rather quickly (in a few 
days). 
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