
Zeros of Sections of the Zeta Function. II 

By Robert Spira* 

1. Recapitulation. Paul Turan proved theorems connecting the locations of zeros 
of the Dirichlet polynomials 

N 

(1) UN(S) =f %n- 
n=1 

with the Riemann hypothesis. Let s = a + it. One such theorem is that if all the 
zeros of every PN(8) had real parts a- < 1, then the Riemann hypothesis would be 
true. Unfortunately, this very simple condition, which could perhaps have been 
worked with in an inductive fashion, was shown by Haselgrove [1] to fail infinitely 
often. In part I of this paper (Spira [2]), a description was given of a calculation of 
zeros of UN(S) for various N up to 1010. No zero with a > 1 was found. 

In this concluding part, we apply in Section 2 generalizatioins of basic theorems 
of Bohr to tN(S), and find g.l.b. I N(8) Ifor o- ? 1 and N < 5. In Section 3 we discuss 
a confirmation of Haselgrove's proof, and report on related calculations. In Section 
4, we describe machine proofs that UN(S) has no zeros with a- ? 1 for N ? 9, and 
proofs of the existence of such zeros for a variety of small N starting with N = 19. 
Finally, we discuss our attempts at finding such zeros. 

2. Applications of Bohr's Theorems. Let pj be the jth prime, so pi = 2. For n > 
1, let rn,j be the highest power of pj dividing n, and let qn be the index of the largest 
prime dividing n. We then can write (1) as 

N 

(2) vN(S) = f, n exp (-it(r, 1 log 2 + rn,2 log 3 + * -+ r,, n log pq,)), 
n=1 

where we interpret the sum in parentheses as 0 when n 1. Introducing the new 
variables xj = t log pj, we now define the companion function of RN(S): 

N 

(3) FN = FN(a, xl, X2, * = E n- exp (-i(rn,xll + rn,2x2 + * + rn,qnxqn)) 
n=1 

Since the log pj are linearly independent over the rationals, and the r, j are 
integers, we can apply generalizations (Spira [3]) of theorems of Bohr [4]. We can 
conclude first of all the set of values of PN(S) for - El (a, oo) and t E (- oo, X ) is 
identical with the set of values of FN(0r, x1, *) where a- E (a, oo) and each xj runs 
independently over [0, 27r). Thus, taking a = 1, gN (S) = 0 for some a > 1 and some 
t if and only if FN(a, xl, ***) = 0 for some (possibly different) a > 1, and some values 
of the variables xi, X2, * We remark also that if PN(s) has one zero with a > 1, it 
has infinitely many (Spira [3]). Secondly, we can conclude that the values of 
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FN(a, xi, **) where a runs over a closed interval, and the xj's run independently 
over [0, 27r), form a closed set. Thus, for the a-interval [1, 2], the distance of this 
set to the origin is a well-defined constant, dN. 

Now, from the last two lines of p. 542 of I, we have that for a > 1, 

(4) | PN(s) I > 1 - 2- (a + 1)/(a - 1) 

and this last function increases with a. At a = 2, its value is 1/4, so for a > 2, 
| N(S)I > 1/4. Hence, for a > 2, IFNI > 1/4, and if dN < 1/4, dN is the minimum 
distance of FN to the origin for all a > 1. For 5 < N < 50 it turns out that dN < 
1/4, but it is also true that for N ? 4, dN is the minimum distance for all a ? 1. 

To discuss these N ? 4 cases, and for the sequel, we define: 

(5) rN = the set of primes p satisfying N/2 < p < N, 

N 

(6) PN*(s) = E n-8 , 7rN(S) = n-8 
n=l;n {rN nIerN 

(7) FN* = FN*(a, xi, *.*) = the companion function of PN*(S), 

(8) PN = PN(ao, xi, * = the companion function of 7rN(s) . 

We have UN(S) = PN*(S) + 7rN(S), FN = FN* + PN. Note that a is the only variable 
FN* and PN have in common. The first four PN*(S) are 1, 1, 1, 1 + 2-8 + 4-8. In 
general, we have 

PN*(S) = RN_(S) if N is a prime, 

(9) PN*(s) = P*_,(s) + (N/2)-8 + N-8 if N is twice a prime, 

PN*(S) = N-1 (S) + N8 otherwise, 

and there are similar equations for FN*. It is clear that the variables in PN can be 
chosen so that PN is a vector in any assigned direction of length EPECN p-a. We 
avoid the general question of whether values of a, xi, . which minimize I FN* I also 
minimize IFNI after suitable selection of the variables in PN. For N < 5, this turns 
out to be true, since the minima for a ? 1 of IFN*1 lie at the extreme a = 1. The 
remarks above on the relations of the sets of values of UN(S) and FN also carry over 
to the functions WN*(S) and FN*. 

For N = 1, it is trivial that dN = 1. A short calculation shows that for N = 2, 
we obtain a minimum d2 = 1/2 at a = 1, xi = -r, and for N = 3, d3 = 1/6 and is 
attained at a = 1, xl = X2 = lr. It is also easy to see that these three minima hold for 
a ? 1. We sketch the calculation of d4. 

We consider first F4*. We have IF4*I > 1 -2-0 - 4-a, which is > 0 for a > 1. 
Thus, for some a in [1, 3] and for some xi in [0, 27r), IF4*I takes on a positive mini- 
mum. In finding such a and xi, we can study g(a, xi) = IF4*I2 instead of IF4*I. At a 
minimum, we must have ag/lxi = 0, (since g is periodic of period 27r in xi, we do not 
have to consider extreme values in that variable). A short calculation gives 

(10) g(a, xi) = 1 + 2-2o, + 4-2a + 21 0[1 + 4-a] cos xi + 2-4 acos 2xl, 

(11) &g/&x 1 = -210'(sin xi)[1 + 4 a + 22 a COS X1] . 

Thus, ag/lxi = 0 if and only if xi = 0 or 7r, or cos xi = - (2a + 2-f)/4. For xi = 7r, 
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setting x = 2-a, we obtain g(a, 7r) = (x2 - x + 1)2. It is easily seen that x2 - x + 1 
> 0, and has its minimum at x = 1/2 or a = 1, where lF4*l = 3/4. 

For xi = 0, we obtain g(a, 0) = (x2 + x + 1)2, which is greater than (x2 - x + 1)2 
(=g(a, 7r)) if x > 0, which we can assume as x = 2-7. Thus, the minimum cannot 
be attained for xi = 0. 

In the final case, using cos 2x, = 2 cos2 xi - 1, if cos xi =-(2a + 2-,7)/4, we ob- 
tain cos 2x, = (46 - 6 + 4-,7)/8 and g(a, Xi) = (1 - 4-a)2, which is least at a = 1, 
and indeed gives the least possible I F4* I of 3 v, 3/8, at cos xi = -5/8. This gives 
d4 = (9 V, 3 - 8)/24 and d5 = (45 -, 3 - 64)/120, where we choose X2 and X3 SO 

that the vectors exp (-ix2) and exp (-iX3) point opposite to F4*(1, arecos (-5/8)). 
If FN(T, xi, * * ) = 0, and if the appropriate Jacobian does not vanish, we can 

solve the equation for a, and thus obtain a a interval in which FN vanishes. The 
zeros of UN(S) will have real parts dense in this interval. The empirical results suggest 
the conjecture that to each UN(S) there is a single such interval, though it could 
possibly arise from overlapping FN a-intervals. 

If we take F as the companion function of a general Dirichlet series, it is not clear 
what we should do about such solvability conditions, since F will have infinitely 
many variables. 

3. Calculations Related to Haselgrove's. The Dirichlet polynomial 

(12) LN(s) = E ? 
n=1 n 

where X(n) is Liouville's function, is equivalent in the sense of Bohr [4] to UN(S), and 
hence assumes the same set of values in any half plane a > ao. If s is real and large, 
then LN(S) is near 1. Thus, if LN(1) < 0, then there would be a real root of LN(s) 
larger than 1, and hence also a root of UN(S) with a > 1. 

The author found that LN(1) > 0 for N < 824,000, and found L293(1) - 
.0051122775, Liooo(1) = .0289948068, values slightly different from those appearing 
in Turan [6]. The lowest value obtained was L96862 = .00011996. R. Sherman Leh- 
man's [5] values of LN(O) for N = 200,000(200,000)800,000 were verified. 

To study LN(1) further, one may use analytic expressions, derived by the calculus 
of residues (Haselgrove [1], Lehman [5]). Indeed, setting 

(13) L(x) E n 

the expression 

(14) BT(u) Ir l<T (2p) exp (i-y+) , 
1t,,<T (P - 1Yep (yAu 

where Pn = 2 + iyn are roots of ?(s), under various unproved hypotheses, can be 
shown to represent eu/2 Li(eu), with some blurring. The focusing improves as T in- 
creases. For example, for T = 200 and u < 2, one can readily see rather sharp 
changes (without a Gibbs effect) as Li(x) makes a step. Lehman [5] used a function 
similar to (14) to successfully guess where L(x) = En:xX(n) changed sign. 

An expression the same as (14) but with the factor (1 - yn/T) inside the sum 
was used by Haselgrove to show that Ll(x) is negative infinitely often. We designate 
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this sum by BT*(U). For corresponding sums for L(x) we use the notation AT(u) and 
AT* (u), as used by Lehman [5]. Finally, by CT(u) and CT*(U) we mean the corre- 
sponding sums for the function M(x) = En< i(n), where ,(n) is the Mobius func- 
tion. We have 

(15) CT (U) = jexp (iynu) 
( 1 5 ) I T~~~~~1-n I <T Pn8'(Pn) 

which represents, hopefully, e-u 2M(eu). Formulas for A T(u) and A T*(U) can be 
found in Lehman [5], and for BT*(u) and CT*(U) in Haselgrove [1]. 

All six of these functions were calculated in double precision for T = 100, u = 

0(.01)500, and for T = 200, 500, and 1000 in selected ranges. The coefficients for 
these functions were calculated in double precision, calculating first improved -yn 
from the 6D values in Haselgrove and Miller [7]. We first discuss the tables in Hasel- 
grove [1]. Write a,, = t(2p7)/p.D'(p.). In Table I, the -yn are correct to within 3 units 
in the 10th significant figure. For the first six la,n, terminal digits 19,8,5,3,2,993, 
were obtained rather than 23,6,8,5,4,878. For n = 9,15,18,34,48 the terminal digits 
4,4,6,6,3 were obtained rather than 5,3,5,7,4. The quantity (ph an)/7r was not 
checked. The values of A 100oo(u) in Table II were confirmed within 1 unit except for 
the five values starting with 831.837, which are two units low. Also, the value at 
831.857 was found to be -.06320. In Lehman's [5] paper the value Aiooo(814.492) 
was found to have terminal digit 0, and A looo(831.847) was found to be .0049448. 

Two new places were found where AT*(U) > 0: Ai*ooo(310.8276) = .0109, 
A* oo(384.690) = .0316. High maxima also occur at u = 33.495, 44.591 and 214.404. 

For Ll(x), the author found that B0 oo(853.853) = -.0321 and B ooo(996.980) = 

-.0450 and B* oo(996.981) = -.0457, confirming Haselgrove's proof. It was also 
found that B ooo(171.4938) = -.0009 and B 00o(331.9602) = -.0170, giving two 
new places where this function is negative. Low minima occur at u = 43.897, 54.624, 
124.843, 188.830, and 437.758. 

To disprove Mertens hypothesis it would be sufficient to find u and T such that 
ICT*(U) I > 1. No such values were found. Table I gives places where I C*ooo(u) rises 
above .5. 

TABLE I. Approximate Values for e-u 12M(eu) 

u C ooo(u) u C0ooo(u) 

22.7730 +.5003 441.5100 + .5145 

43.8965 -.5199 480.6430 + .5069 

97.5260 +.5355 814.4910 +.5061 

310.8258 + .5301 S53.852 - .6027 

4. Machine proofs. We first describe the proofs that VN(S) # 0 for a- > 12 N < 9. 
The idea of such a proof is, for one variable, based on the formulas 

(16) I f(xo + h) I > I f(xo) I - max Ihj * max I f'Q) I, 
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(17) f(xo + h)I > If(xo)I - max lhl If'(xo)I - (max jhi2/2!) max If"Q)I, 
which are easily derivable from the Taylor's expansion under suitable restrictions on 
f. Thus, from formula (16), if I f'(t) I is suitably bounded, and f(xo) $ 0, we can con- 
clude that f(x) 5 0 for a small interval about xo. Formula (17) is useful when I f(x) I 
has a small minimum, as in the cases we consider. We then get some help from 
If'(xo) I being small near the minimum, and from the Ihj2 in the next term. These 
formulas easily generalize to the case of f being a real or complex function of several 
real variables. Roundoff also must be taken into account. 

In our particular case, we can take advantage of the special nature of our func- 
tions FN, and consider only the variables appearing in FN*. If we take the variables 
a, Xl, *.*.*, to lie in a cube C, we have at any point in C, 

(18) iFN| > IFN*| - IPNI > g.l.b. IFN*| - l.u.b. IPNI. 
C C 

Thus, IFNI > 0 in C provided g.l.b.c IFN*i > l.u b.c IPNI (= EpE7rNP- in ). Now 
we can apply formulas of the type (16) or (17). Write FN*= u + iv. A formula corre- 
sponding to (16) is 

IFN*(o + h, xl + hl, ..) 

()> IFN*(o, xi, ... )I -max hh [max |au) + max av 
(19) 

o 0 

-max |hjL L(max oa + max o3x | 

and one corresponding to (17) is 

IFN*(o + h, xi + hi, ...) > I|FN* (, Xi, *.'.) 

-max lhl 
ou 

(, xi, *..* ) +i 
ov 

( 
\1 

xl, 
. . . 

-max hil[ | 
au 

(0' X12 *.*) + i do (0f2 xl, ... 

(b |umax~h3{~ |a a'2 

max |hl [ av 1 ) 
(20) rna 2 2 a, 

- maxIh 2I [ ( x a2 + a2x 

ri 
~a2u a2 

It was not possible to avoid using (20). The expressions in (20) can be simplified. 
We have, writing rN* as [1, N] - rN, 

(21) max l + max | < 2 E (log n)n-m'n q 
and using the nn7rN 

and using the notation of (2), 
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(22) 
u 

(max +max | d 2 E (r. 1 + r. 2 + + rn,qn)n ax i alxi n (=7rN* 

For formula (20) we can use 

2 2 

(23) max 
a u + max |9 - < 2 Et (logn) 2)nmi 

oa2 C10.2 ~~nerN* 

,,, ax~x, a(9av n2 
min 

(24) E max |+ max ) 2 Z (rn 1 + + rnq n- Y 

(25) max + ? max < 2 E (log n) (rnl * * + rnq n 

To save computation, the machine proof was attempted simultaneously for those 
N's for which the FN* have the same number of variables xj. The process of proof 
starts with the cube a: [1, 2], xj: [0, 2r], j = 1, * **. One could limit one of the xj's to 
[0, 7r], since IFN(a, xi, X2, * *) I = jFN(a, 2ir - xi, 2ir - X2, * * *) 1. One breaks the cube 
into smaller cubes, and checks by (19) and then (20) to see if IFNI > 0 throughout 
each smaller cube. The smaller cubes not satisfying this are further refined. The final 
program used integer pair coordinates for the xj's, (m, n) = 2mir/n, where n was 
chosen a power of 2. All the cubes of a size were examined together, so that the sines 
and cosines could be computed just once for a given set of cubes. Also, the coordi- 
nates of min IFNI were saved. If one attempts to use condition (19) alone, the num- 
ber of cubes rises to an impractical level. 

Table II gives results of the proofs for N = 6 to 9 at several stages. The roundoff 
leeway was taken as 10-A. Column 1 contains the a-width of the cubes. Column 2 has 
the number of division of 2ir for the xj edge length. Column 3 gives the o-coordinate 
of the center of the cube with minimum IFNI, which turned out to be the same for 
N = 6 to 9. The next three columns give min IF61 and the integer first coordinates of 
xi and X2 where this minimum was attained. The second coordinate is twice the value 
in column 3, (since we are calculating at the centers of cubes, the program needs a 
mesh half the edge). For example, in the first row, we are considering cubes of a- 
width .25, and xj width 2ir/16. The min IF61 is .28384 and is- attained at 
xl = 11 (2ir/32), X2 = 15 (2ir/32). The next nine columns give corresponding data 
for N = 7, 8, 9. The last two columns give the letters Y and N according to whether 
a proof was obtained or not. The letters are in order corresponding to N = 6 to 9. 
The first of these columns gives the proof results obtained using (19) above, and 
the second, the results obtained using (20) also. The results in the N = 8 columns 
indicate that the proof first sought out a secondary minimum, which was later 
calculated, and then finally found a cube where there was a lower minimum as the 
mesh refined. Each set of cubes was processed completely to find min IFNI, reject- 
ing when possible, using the current min IFNI, and then a second pass made using 
the final values of min FFNT to reject further cubes. The program also saved cubes 
where there was a possibility of lower min IFNI within the cube. The total run 
time was less than 20 minutes. 

The min IFNI in the table were recalculated in double precision, and a separate 
confirmatory calculation was performed along a = 1 which found xi and X2 which 
minimized !FN(1, Xl, X2)1 for a mesh of 27r/650. Values of xi, X2 which gave 

IFN(1, xl, x2)1 slightly greater than the minimum were also saved, and studied, and 
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other checking computations were performed. 
It would not be difficult now to repeat the computational proof. 
Minima of IF* I and IF* I were also sought with a mesh of 2ir/150, and of IF* I 

through IF* I with a mesh of 2ir/50. Local minima were then sought by a minimum 
search program, using starting values obtained from these initial searches. The 
searching program simply stepped each variable by a quantity h, halving h, for a 
number of times, as the minimum was found with mesh h. For N > 21, further 
minima were also sought, using as starting values the quantities xj at which IF*-,I 
was a minimum, taking ir for the initial value of any new variable. 

Table III gives the results of these computations. The xj are given in radians. 
The quantities for N ? 35 should be accurate to one unit in the last place, as they 
were computed in double precision. For 35 < N < 50, the quantities should be cor- 
rect to within 3 units in the last place. It is not claimed that the local minima are the 
true absolute minima of |FN*I. 

Since IFN* I- 1 and EPE1rTNP'- -0 as o- - co, if we find values of the variables 
xi, *, so that !FN*(1, X ... ) - EPe7rN 1/p < 0, then FN(o-, Xl, ) has a root 
with o- > 1. Thus, from Table III, for N = 19, 23 to 27 and 29 to 50, FN has roots 
with o- > 1. 

It is possible that such searches for minima could be speeded by using a gradient 
method. If this were so, one could write a general program for computing successive 
minima of the IFN*I and study whether this situation of zeros for bV(S) for N ? 29 
continues to hold. We remark that it follows from Rosser and Schoenfeld's [8] in- 
equalities for P<Xi/p that PePrN i/p is approximately log 2/log N and tends 
to zero as N - oo 

To find a zero of p19(s) with a > 1, one can seek t for which t log pj xj + E3 

(mod 2ir), j = 1, - , 4, where the x; have the values of Table III for N = 19 and Ej 

is small. For j = 1, we can make E1 = 0 by choosing t = (x + 2kir)/ log 2, k = 0, 
4?1, ?t2, -... Then for each k we can check if t log pj xj (mod 2ir) within Ej, for 
j = 2, 3, 4, where we preassign the Ej'S. If one accumulated a sufficiently large num- 
ber of such cases, and if 11-8, 13-8, 17-8 and 19-8 are randomly pointed, one could 
hope to find a case of a zero of p19(s) beyond CT = 1. Efforts along these lines produced 
the zero of p23(S) .9705 + i 10716133.0062, which has real part somewhat beyond 
that of the lowest zero .9325 + i 1.6975. 

The calculations were performed on an IBM 7040 at the University of Tennessee 
Computing Center, which was aided by grants NSF-G13581 and NSF-GP4046. 
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