On Designs of Maximal
(+1, 1) -Matrices of Order n = 2 (mod 4)

By C. H. Yang

When n = 2 (mod 4), it is known that the absolute value a, of the determinant
of nth order (41, —1)-matrices satisfies the following inequalities:

' < 4n—1)7>n -2 =, (see [1])
and

o =%, for n <54, except n=2234 (see[l], [2] and [3]) .

Let M, be a maximal (+1, —1)-matrix of order n = 2 (mod 4). Then such a
maximal matrix M, can be constructed by the following standard form:

A B
Mn=(_BT AT>’

where 4, B are circulant matrices of order n/2. T indicates the transposed matrix.
In this case, the gramian matrix G(M,) of M, has the following form:

3 r (P 0)
GOML,) = MM, —<0 p)

where

_ T T _ n~. 2>
P=AA"+ BB _<2 )

More precisely, we have
G(4) = AAT = (ai), G(B) = BBT = (b)),

1 =14 j=<n/2;wherea;; = b;; = n/2,forl <17 = n/2, and a;; + b;; = 2 for
i ¥ j. Since A, B are circulant (41, —1)-matrices, it can be shown easily that
G(A), G(B) are not only circulant but also symmetric, namely, a;; = al.—;| and
bi; = bli—jl. It follows that construction of M, is reduced to finding two finite
sequences {ax} and {bi}, 1 = k = (n — 2)/4, such that a; + b, = 2.

Let C = (cs;) be an mth order circulant (41, —1)-matrix, then G(C) = G(CT)
= G(Cpy), where Cpq = (cr)), k = p + 2,1 = ¢ + 7 (mod m) for fixed integers
p and ¢. Consequently, the finite sequences of C, CT and C,, are identical; there-
fore, matrices C, CT and Cp, are regarded as of the same type.

In the following table, all M,, constructible by all distinct types of A and B with
the restriction that N(4) < N(B) < n/4, where N(C) means the number of —1’s
in each row of C, are listed for n < 38.

The following methods and theorems are helpful for constructions of M,.

Let S = (si;) be the mth order circulant matrix such that
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sy = 1,ifj — 7 =1 (mod m) ,
= 0, otherwise .

Then the mth order circulant matrices C, D whose first row vectors are respectively
U= (ug, *++, un), V. = (v1, - -+, vm) can be represented as

C= 2 wsS™ and D=2 S
k=1 k=1

where S° = I = the mth order identity matrix.

THEOREM 1. Let
C D
M= (—DT CT>’

then the gramian matriz G(M) becomes

I e 0>
(1) GM)=MM —<0 c)
where G = (g;;) = CCT + DDT. And

(2) gij = cij +dij = ¢ + di = gk = G
if k = |1 — j|, where (¢;;) = CCT, (dij) = DDT;cij = ¢ = Cmi and dij = di
= dps, f k=12 — j|.

THEOREM 2. Let p and q be respectively the number of 1’s in the first row vectors
U, V of C and D when ux, vk are 0 or 1. Then

®3) zck=p(p—1) and zdk=q(q—1).
And

4) e+ di =71, forl1=k=m-—1,
implies

(5) rim—1)=pp—1)+q¢¢—1).

THEOREM 3. Let A and B be the matrices obtained by substituting —1’s for 1’s
and 1’s for 0’s in C and D respectively. Then the elements gi of G berome

©) gr = 2m, ifk =0,
=2m —4(p+q—cx — di) , otherwise .
And
™) gp=2, forl=k=im-1),
if and only if
8) ptg—r=4%im—-1).

Sketch of the proofs for Theorems 1, 2, and 3. Since the 7th row vector and jth
column vector of C can be expressed as US*! and (US71)7, respectively, we have
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— USTHUSTHYT = USTH(STHTUT
US-lgmHgT [oe (8T = 8™

= (US™*")U" = conyizisni ifj>7,

= (US™HU" = ctjsn1, ifizj [--- 8" =1]

=UWUS™" = crjmivn, 7=,

Since the gramian matrix is symmetric, i.e., ¢;; = cj;, by defining ¢x = c1p+1)
= C(k+1)1, W€ have

o
S
)

|

Ck = Cli—j| = C1(j—i+1) = Cij
= ComtimjD1 = Clm—(i=d| = Cm—t, ifk=1]i—j|.
Similarly we have di = dli—jl = dsj = dusi if bk = |2 — j|.

The equalities (3) can be proved by mathematical induction. When p = 1,
obviously they are true. Assuming that they are true for p = N < m, we have
dmlg = NN — 1) and N 1’s in U. Without loss of generality, let us assume
u; = 0. Then by replacing u; = 0 by u; = 1in U, which corresponds top = N + 1,
we observe that 2(m — 1) terms wux, weu; (k # 7,1 £ k £ m), in E;’:ﬁ =

nl GUSHT = > mt 3 m wu; [l =4 — k (mod m)], may be affected by
this change. Among these 2(m — 1) terms, exactly 2N terms change the value
from O to 1, for there are N 1’s among wx (k # j, 1 < k = m). Therefore,

mtle =NHN —1) 4+ 2N = (N + 1)N, thus they are also true forp = N 4 1.

For proof of Theorem 3, let AAT = (a;;) and ax = al—jl = a4, if k = | — j.
Since a;, = U(US¥H)T = Z’Ll ua; [ =7 — k (mod m)], by observing that there
are ¢, 2(p — c), and m — ¢ — 2(p — c) terms of uau,; respectively with
u; =ur = —1, uys = —u; =1 (or —1),and u; = u; = 1, we have ar, = m —
4(p — cx), for1 = k = m — 1. Similarly, by = m — 4(¢q — dx), where by = bi.—;|
= b, if k = |¢ — j| and (b;;) = BBT. Consequently, we have

ge=0ar+b=2m—4(p+q—c —dp), forl sk=m-—1.

The equality (8) can be derived easily from (3), (5), (6), and (7).

From (5) and (8), and for a given m and preassigned r, solutions for p and ¢
can be obtained. When m = 11, 17, - - -, there is no solution for p and ¢. (See [1]
and the table of [2].) For constructions of M,, it is noticed that finding two se-
quences {cy} and {d:} satisfying (4) is usually easier than finding two sequences
{ar} and {b;} satisfying (7).
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