On Designs of Maximal (+1, -1) -Matrices of Order $n \equiv 2 \pmod{4}$ ## By C. H. Yang When $n \equiv 2 \pmod{4}$, it is known that the absolute value α_n of the determinant of *n*th order (+1, -1)-matrices satisfies the following inequalities: $$\alpha_n^2 \le 4(n-1)^2(n-2)^{n-2} = \mu_n \quad (\text{see } [1])$$ and $$\alpha_n = \mu_n^{1/2}$$, for $n \le 54$, except $n = 22, 34$ (see [1], [2] and [3]). Let M_n be a maximal (+1, -1)-matrix of order $n \equiv 2 \pmod{4}$. Then such a maximal matrix M_n can be constructed by the following standard form: $$M_n = \begin{pmatrix} A & B \\ -B^T & A^T \end{pmatrix},$$ where A, B are circulant matrices of order n/2. T indicates the transposed matrix. In this case, the gramian matrix $G(M_n)$ of M_n has the following form: $$G(M_n) = M_n M_n^T = \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix},$$ where $$P = AA^{T} + BB^{T} = \begin{pmatrix} n \cdot & 2 \\ 2 & \cdot n \end{pmatrix}.$$ More precisely, we have $$G(A) = AA^{T} = (a_{ij}), G(B) = BB^{T} = (b_{ij}),$$ $1 \leq i, \ j \leq n/2$; where $a_{ij} = b_{ij} = n/2$, for $1 \leq i \leq n/2$, and $a_{ij} + b_{ij} = 2$ for $i \neq j$. Since A, B are circulant (+1, -1)-matrices, it can be shown easily that G(A), G(B) are not only circulant but also symmetric, namely, $a_{ij} = a_{|i-j|}$ and $b_{ij} = b_{|i-j|}$. It follows that construction of M_n is reduced to finding two finite sequences $\{a_k\}$ and $\{b_k\}$, $1 \leq k \leq (n-2)/4$, such that $a_k + b_k = 2$. Let $C = (c_{ij})$ be an *m*th order circulant (+1, -1)-matrix, then $G(C) = G(C^T)$ = $G(C_{pq})$, where $C_{pq} = (c_{kl})$, $k \equiv p + i$, $l \equiv q + j \pmod{m}$ for fixed integers p and q. Consequently, the finite sequences of C, C^T and C_{pq} are identical; therefore, matrices C, C^T and C_{pq} are regarded as of the same type. In the following table, all M_n , constructible by all distinct types of A and B with the restriction that $N(A) \leq N(B) < n/4$, where N(C) means the number of -1's in each row of C, are listed for $n \leq 38$. The following methods and theorems are helpful for constructions of M_n . Let $S = (s_{ij})$ be the mth order circulant matrix such that Received April 3, 1967. $$s_{ij} = 1$$, if $j - i \equiv 1 \pmod{m}$, = 0, otherwise. Then the *m*th order circulant matrices C, D whose first row vectors are respectively $U = (u_1, \dots, u_m), V = (v_1, \dots, v_m)$ can be represented as $$C = \sum_{k=1}^{m} u_k S^{k-1}$$ and $D = \sum_{k=1}^{m} v_k S^{k-1}$ where $S^0 = I =$ the *m*th order identity matrix. THEOREM 1. Let $$M = \begin{pmatrix} C & D \\ -D^T & C^T \end{pmatrix},$$ then the gramian matrix G(M) becomes $$G(M) = MM^{T} = \begin{pmatrix} G & 0 \\ 0 & G \end{pmatrix},$$ where $G = (g_{ij}) = CC^T + DD^T$. And $$(2) g_{ij} = c_{ij} + d_{ij} = c_k + d_k = g_k = g_{m-k},$$ if k = |i - j|, where $(c_{ij}) = CC^T$, $(d_{ij}) = DD^T$; $c_{ij} = c_k = c_{m-k}$ and $d_{ij} = d_k = d_{m-k}$, if k = |i - j|. THEOREM 2. Let p and q be respectively the number of 1's in the first row vectors U, V of C and D when u_k , v_k are 0 or 1. Then (3) $$\sum_{k=1}^{m-1} c_k = p(p-1) \quad and \quad \sum_{k=1}^{m-1} d_k = q(q-1).$$ And $$(4) c_k + d_k = r, for 1 \leq k \leq m-1,$$ implies (5) $$r(m-1) = p(p-1) + q(q-1).$$ THEOREM 3. Let A and B be the matrices obtained by substituting -1's for 1's and 1's for 0's in C and D respectively. Then the elements g_k of G become (6) $$g_k = 2m$$, if $k = 0$, = $2m - 4(p + q - c_k - d_k)$, otherwise. And (7) $$g_k = 2$$, $for 1 \le k \le \frac{1}{2}(m-1)$, if and only if (8) $$p + q - r = \frac{1}{2}(m - 1).$$ Sketch of the proofs for Theorems 1, 2, and 3. Since the *i*th row vector and *j*th column vector of C can be expressed as US^{i-1} and $(US^{i-1})^T$, respectively, we have 176 C. H. YANG | 14 | u | $\{a_k\}$ or $\{b_k\}$ | The first row of A or B | |---|-----|---|---| | 1, 1
1, 1, 1
-3, 3, 3
-1, -1, -1
-3, 1, 1, 1
1, -3, 1, 1, 1
1, 1, 1, -3
1, 1, 1, 1, -3
1, 1, 1, 1, 1, 1
1, 1, 1, 1, -3
1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++++
++++
++++
++++
++++
++++
++++++++ | 9 | -1 | ++
++
+ 1 | | -3, -3, -3 -1, -1, -1 -3, 1, 1, 1 1, -3, 1, 1 1, -3, 1, 1 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1, 1 1, 1, 1, 1, 1 2, 1, 2, -3, 1 3, 1, -3, -3, 1 1, -3, -1, -1, -1, -3 3, 3, 3, 3, -1 -1, -1, -1, -1, -3 -1, -1, -1, -1, -3 | 10 | | ++ | | 5, 1, 1, 1 1 1, -3, 1, 1 1 1, -3, 1, 1 1 1, 1, 1, 1, 1 1 1, 1, 1, 1, 1, 1, 1 1 1, 1, 1, 1, 1, 1, 1, 1 1 2, 1, -3, -3, -3, 1, 1, 1 1 3, 3, -1, -3, -3, -1 1 -1, -1, -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 -1, -1, -1, -1, -1 1 | 14 | .3,
-1, | ++ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 18 | -1-1 | +++++++++++++++++++++++++++++++++++++++ | | 1, 1, 1, 5 1, 1, 1, 1 1, 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1 2, 1, 5, 5, 1, 1, 1 1, 1, 1, 1, 1 -3, 1, -3, -3, 1, 1, 1 1, -4++++++++++++++++++++++++++++++++++++ | · · | ا
ئى ئى | ++ | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | ı | 1, 1,
1, 1, | ++ | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 26 | 1, 1, 1, 1, |
 -++++
 -+-+ | | 5, 1, 5, 5, 1, 1, ++- ++++++++++++++++++++++++++++++++++++ | ı İ | 1, 1, 1, 1, | +++-+ -++- | | 1, 5, 1, 1, 5, 5
1, -3, 1, 1, -3, -3
++ +++ +++ +++
-1, -1, -1, -1, -1, 3
3, 3, 3, 3, 3, 3, 3, -1
-1, -1, -1, -1, -1, -1, -1
3, 3, 3, -1, 3, 3, 3,++ ++++ +++++
-1, -1, -1, -1, -1, -1, -1
+-+ +++++ +++++ +++++ ++++++++++++++ | ı | 1, 5, 5, 1, 1, 1, -3, -3, 1, | +++ +++ +++ +++ +++ +++ +++ +++ +++ | | 3, 3, 3, 3, 3, -1
-1, -1, -1, -1, -1, 3
3, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 | 1 | -3 , 1, 1, $\frac{5}{1}$, -3 , | +++ +++ +++ +++ +++ | | 3, 3, 3, -1, 3, 3, 3,+-+ +++++ -+++
1, -1, -1, 3, -1, -1, -1 -1 -1 -1 -1+- +++++ +-++ +- | 30 | 3, 3, 3, 3, 3, 3, 3, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | +++
+++
+++
+++
++1
+++
++1
+++
++1
+++
++1 | | | , ł | 3, 3, 3, -1, 3, 3, 1, 1, -1, -1, -1, 3, -1, -1, -1, | +++
++1
+++
+++
+++
+++
+++
+++
+++
+++ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | +++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ | |---|---| | -1, -1, 3, -1, -1, -1, 5
-1, 3, -1, 3, 3, 3, 3,
3, -1, 3, -1, -1, -1, -1
+ | | 178 C. H. YANG | $\{a_k\}$ or $\{b_k\}$ | | The first row of A | of A or B | | |--|---|---|---|--| | 3, -1, -1, -1, 3, 3, 3, 3, 3, 3, 3 $-1, 3, 3, -1, -1, -1, -1, -1, -1, -1$ | ++ |
 +
 + +
 + +
 + | ++ |
 ++
 ++
 + | | -1, 3 , 3 , 3 , 3 , 3 , -1 , -1 , 33 , -1 , -1 , -1 , -1 , -1 , 3 , 3 , -1 |
 + + +
 +
 + +
 | ++++ | + + + + + + + + + + + |
 + + + +
 + + + +
 1 + +
 + + + | | -1, 3 , 3 , 3 , -1 , 3 , -1 , 3 , -1 , 3 , 3 , 3 , -1 , -1 , -1 , -1 , 3 , -1 , 3 , -1 , 3 , -1 , -1 | ++ | ++
 ++
 -
 ++ | +++++++++++++++++++++++++++++++++++++++ |
 + +
 +
 + + | | 3, | + + + + + | ++
 +
++
 +
++ | + + + + + + + + + |
 + +
 + +
 + + | | -1, -1, -1, 3, 3, 3, 3, 3, 3, -1, 3 $3, 3, -1, -1, -1, -1, -1, -1, 3, -1$ | ++ |
 + +
 + +
 +
 + + | + + + + + + + + + + + + + + + + + + |
 + +
 + +
 + + | | -5, -1, -1, 3, 3, -1, -1, 3, -1, -1, 3, 3, -1 | ++ | + + + + + + | ++ |
 + +
 + +
 + | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | +++ | +++
+ +
 +
+ +
+++ | ++ +++ +++ | +++
+++
+ - | | 3, 7, -1, 3, 3, -1, -1, -1, 3 $-1, -5, 3, -1, -1, 3, 3, 3, -1$ | + + + + + + + + + + | +
+ +
 + + +
 + + | +++ |
 +++
 +++
 + + | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
 +
 +
 +
 | +++++++++++++++++++++++++++++++++++++++ |
 + +
 + !
 + ! |
 + +
 + +
 + | | 3, 3, 3, 3, 3, -1, -1, -1, 7, -1 $-1, -1, -1, -1, 3, 3, 3, -5, 3$ |
 | +++
+++
+!!
+++ | + + + + + + + + + + |
 +++
 ++
 +++ | | 3, 3, 3, -1, -1, 7, 3, -1, -1
-1, -1, -1, 3, 3, -5, -1, 3, 3 | +
 + +

 | +
+ +
 +
+ +
+ | ++
 ++
 ++
 +- | ++
++
+।
++ | | | | | | | u | 3, 3, -1, 7, -1, -1, -1, 3, 3 $-1, -1, 3, -5, 3, 3, 3, -1, -1$ | + +
+
 + +
 | ++
++
+++
+
+++ | +++
+
+ +
 ++
+++ | +++ | |--|-------------------------------------|--|---|----------------------------| | | ++ |
 ++
 ++
 +
 ++ | + + + + + + + + + + + + + + + + + + + | ++
++
++
+ I | | -1, 3, -1 , -1 , 3, 3, -1 , -1 | + + + + + + + |
 + +
 +
 + +
 + + | + | ++
++
+ | | 3, -1, -1, -1, 3, 3, 3, -1, 7
-1, 3, 3, 3, -1, -1, -1, -1, 3, -5 |
 + +

 +++
 |
 | +++
+++
+ +
++ | +++
+++
+++ | | -1, 3 , 7 , 3 , -1 , 3 , -1 , 3 , -1 , 3 , -1 , 3 , -1 , 3 , -1 , 3 | + + + + |
 + +
 + +
 + +
 + | + | +++
+++
 ++
+++ | | -1, 3 , -1 , 7 , 3 , -1 , 3 , 3 , -13 , -1 , 3 , -5 , -1 , 3 , -1 , -1 , 3 |
 +
 + +
 | ++
 +
 +
 -
 + | +
+
+ +
+ +
+ + | ++
++
++
 + | | 3, -1, 3, 3, 3, 7, -1, -1, -1, -1, -5, 3, |
 + +
 +
 | ++
 ++
 ++
 ++ | ++

++
++
+ | ++
++
++
++ | | 3, 3, 3, -1, -1, -1, 7, -1, -1, -1, 3, 3, -5, | | +++++++++++++++++++++++++++++++++++++++ | ++ |
++
++
 ++ | | $-1, 3, 3, \\ 3, -1, -1,$ |
 | ++
+++
 +
+++ | + +
 + +
+ + +
+ | +++
+++
+++ | | -1, -1, -1, 3, -1, 7, 3, 3, -1, 3
3, 3, -1, 3, -5, -1, -1, 3, -1 | +
+ +
+
 | | + +
+ +
+ + +
+ + + | +++
++
+++
+++ | | -1, -1, -1, 3, -1, 3, 3, 7, 3, -1 $3, 3, -1, 3, -1, -1, -5, -1, 3$ |
 + +
 +
 | ++
+++
 ++
 ++ | + + + + + + + + + + + + | +++
+++
+++
+ + | | -1, -1, -1, -1, 3, 7, -1, 3, 3, 3
3, 3, -1, -5, 3, -1, -1, -1 | + + + + + + | +
 +
 +
 + +
 + | +
 + +
 + +
 + + | ++
++
++
++ | | | | | | | 180 C. H. YANG $$c_{ij} = (US^{i-1})(US^{j-1})^T = (US^{i-1})(S^{j-1})^T U^T$$ $$= US^{i-1}S^{m-j+1}U^T \quad [\cdots (S^k)^T = S^{m-k}]$$ $$= (US^{m+i-j})U^T = c_{(m+i-j+1)1}, \quad \text{if } j > i,$$ $$= (US^{i-j})U^T = c_{(i-j+1)1}, \quad \text{if } i \ge j \quad [\cdots S^m = I]$$ $$= U(US^{j-1})^T = c_{1(i-j+1)}, \quad \text{if } j \ge i.$$ Since the gramian matrix is symmetric, i.e., $c_{ij} = c_{ji}$, by defining $c_k \equiv c_{1(k+1)}$ $= c_{(k+1)1}$, we have $$c_k = c_{|i-j|} = c_{1(j-i+1)} = c_{ij}$$ = $c_{(m+i-j+1)1} = c_{|m-(j-i)|} = c_{m-k}$, if $k = |i-j|$. Similarly we have $d_k = d_{|i-j|} = d_{ij} = d_{m-k}$ if k = |i-j|. The equalities (3) can be proved by mathematical induction. When p = 1, obviously they are true. Assuming that they are true for p = N < m, we have $\sum_{k=1}^{m-1} c_k = N(N-1)$ and N 1's in U. Without loss of generality, let us assume $u_j = 0$. Then by replacing $u_j = 0$ by $u_j = 1$ in U, which corresponds to p = N + 1, we observe that 2(m-1) terms $u_j u_k$, $u_k u_j$ $(k \neq j, 1 \leq k \leq m)$, in $\sum_{k=1}^{m-1} c_k = m$ $\sum_{k=1}^{m-1} U(US^k)^T = \sum_{k=1}^{m-1} \sum_{i=1}^m u_i u_i \quad [l \equiv i - k \pmod{m}], \text{ may be affected by this change. Among these } 2(m-1) \text{ terms, exactly } 2N \text{ terms change the value}$ from 0 to 1, for there are N 1's among u_k $(k \neq j, 1 \leq k \leq m)$. Therefore, $\sum_{k=1}^{m-1} c_k = N(N-1) + 2N = (N+1)N$, thus they are also true for p = N+1. For proof of Theorem 3, let $AA^T = (a_{ij})$ and $a_k = a_{|i-j|} = a_{ij}$, if k = |i-j|. Since $a_k = U(US^k)^T = \sum_{i=1}^m u_i u_i$ $[l \equiv i - k \pmod{m}]$, by observing that there are c_k , $2(p-c_k)$, and $m-c_k-2(p-c_k)$ terms of u_iu_l respectively with $u_i = u_l = -1$, $u_i = -u_l = 1$ (or -1), and $u_i = u_l = 1$, we have $a_k = m$ $4(p-c_k)$, for $1 \leq k \leq m-1$. Similarly, $b_k = m-4(q-d_k)$, where $b_k = b_{|i-j|}$ $= b_{ij}$, if k = |i - j| and $(b_{ij}) = BB^T$. Consequently, we have $$g_k = a_k + b_k = 2m - 4(p + q - c_k - d_k), \quad \text{for } 1 \le k \le m - 1.$$ The equality (8) can be derived easily from (3), (5), (6), and (7). From (5) and (8), and for a given m and preassigned r, solutions for p and qcan be obtained. When $m = 11, 17, \dots$, there is no solution for p and q. (See [1] and the table of [2].) For constructions of M_n , it is noticed that finding two sequences $\{c_k\}$ and $\{d_k\}$ satisfying (4) is usually easier than finding two sequences $\{a_k\}$ and $\{b_k\}$ satisfying (7). ## 4 Gunnison Park Boulevard Oneonta, New York ^{1.} H. Ehlich, "Determinantenabschätzungen für binäre Matrizen," Math. Z., v. 83, 1964, ^{1. 11.} Behleh, Determinantenabschatzungen für binare Matrizen, Math. 2., v. 33, 1304, pp. 123-132. MR 28 #4003. 2. C. H. Yang, "Some designs for maximal (+1, −1)-determinant of order n = 2 (mod 4)," Math. Comp., v. 20, 1966, pp. 147-148. MR 32 #5534. 3. C. H. Yang, "A construction for maximal (+1, −1)-matrix of order 54," Bull. Amer. Math. Soc., v. 72, 1966, p. 293. MR 32 #5678.