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The author is indebted to C. F. J. Outred for, among other things, the notion of 
rotation. The referee has pointed out that in the table for Pn (= G(n)/n in the present 
notation) of [1, p. 397] the last entry should read 12198 instead of 12196. There are 
further references in [1]. 
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The Maxima of P7(n,, n2) 

By M. S. Cheema* and H. Gupta 

1. In this note, we study the maxima of P(nli, n2), the number of partitions of 
the vector (n1, n2) into exactly r parts (vectors) with positive integral components. 

The generating function r(x1, X2) for P(nli, n2) is given by 
co X0 

(1.1) ]I (1 - zX1klx2k2)1 = 1 + : Z rr (XI, X2) 
ki,k2=1 r_1 

(1.2) Or (Xl, X2) = 1 + E Pr(ni, n2)XliX2. 
nl ,n2= 1 

2. If qr(ni, n2) denotes the number of partitions of (ni, n2) into at most r parts 
(vectors) with nonnegative integral components, then it follows that qr(ni, n2) = 

P,(n1 + r, n2 + r). It is clear that qr(ni, n2) is an increasing function of r for 1 _ r 
< ni + n2, and becomes constant for r _ ni + n2, on the other hand Pi(n1, n2) = 1 
and Pr(nli, n2) = 0 for r > min (ni, n2). From the table of values of Pr(nli, n2) com- 
puted by Cheema, we notice that for n, _ n2 > 0, there is a unique s such that 

Pi(ni, n2) < P2(ni, n2) < * * * < P,,(ni, n2) _ P,+,(ni, n2) >_ * * * > 
Pn,(ni) n2) 

We use s in this sense in all that follows. The values of s were computed for all ni, 
n2 < 50. We might remark that a similar conjecture holds for the number of parti- 
tions of n into exactly r summands. An explicit formula for Pr(ni, n2) for general r is 
not known, P,(ni, n2) do satisfy a recurrence relation and behave very much like a 
polynomial in ni, n2, i.e., Pr(ni, n2) is a semipolynomial of degree r - 1 in ni and n2 
relative to modulus rH as shown by Wright [2]. Thus 

Ir tr 

Pr(n1, n2) = f E /tl t2 12, n,2)ltl-ln2 
ti=i t2=1 

where f3(ti, t2, ni, n2) depends on r, tl, t2 and on the residues of ni, n2 to moduli 1, 2, 
3, * * *, [r/t ], but not otherwise on nli, nf2. A rough estimate for s is obtained by study- 
ing the maxima of a function which behaves very much like Pr(n1, n2). 
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3. For ni, n2 large compared to r, P,(nr, n2) behaves very much like the function 

Using this estimate and using P,(nl, n2) > Pr+(nli, n2), we obtain s = min (r, ni, n2), 

where r is the least positive integer satisfying 

(3.1) (n, - r)(n2- r) ? r2(r + 1) 

Roughly such an r is given by (nl n2)"1. If ni = n2 = n, then as in [1] 

(3.2) Pr(n,n) IQ ! )2exp (r 02g) 

Hence P8(n, n) > P8+1(n, n) implies that 

(3.3) (n - S)2 < (S + 1)82-(382+38+1)1n2 

As a rough estimate we have s ? n2/3. The inequality (3.3) gives a good estimate for 
s for a particular n. Thus for n = 50, the value of s by (3.3) is 14, while the actual 
value is 13. For n = 52, s = 14 both by the inequality and the tables. 
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