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The numbers in parenthesis are powers of ten, e.g., (-2).33837 = .33837 X 10-2. 

x F(x) 6p(X) EE(X) 

2 (-1) .57026 (-3).49 (-2).20 
3 (-2) .33837 (-3).20 (-5).99 
4 (-4) .79388 (-4).48 (-4).10 
5 (-6) .71853 (-5).43 (-5).39 
6 (-8) .24730 (-5).56 (-5).13 
8 (-14).15594 (-5).54 (-6).21 

10 (-22).19100 (-5).32 (-7).42 

For the range of values of x given in the table the expression for P is obviously 
more complicated than E and, in fact, on a digital computer requires about thirty 
percent more computation time. Unfortunately, however, the worth of E(x) is 
questionable for x < 2, which is not the case for P(x). 
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Improvement in Recurrence Techniques for the 
Computation of Bessel Functions 

of Integral Order 

By Fr. Mechel 

The Bessel functions satisfy recurrence relations which are very convenient for 
the generation of these functions, especially when a great number of functions with 
varying index is needed, [1], [2], [3]. 

To start with the spherical Bessel functions jn(X), yn(X), the recurrence relation 

(1) fn_1(x) + f,+,(x) = ((2n + 1)/x)f,(x) 

is valid, which can be used either in the upward direction of the index n or in the 
downward direction. For the generation of the spherical Neumann functions yn(x) it 
must be used in the upward direction with the starting functions 

(2) yo (x) = -cos x/x and y1 (x) = -sin x/x - cos x/x2. 

The computation of the spherical Bessel function jn(x) with Eq. (1) is more diffi- 
cult, since now the recurrence relation must be used in the downward direction. 
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According to the "state of the art" (see e.g. [3]) the computation starts with a 
"sufficiently high" index N and enters with the trial functions 

(3 ) JN+ , JN= a, 
a any small number, into the recurrence relation. By repeated use of Eq. (1) finally 
Jo is obtained. With the exact representation of jo(x) = sin x/x a scale factor 

(4) C = jo(x)/1o(x) = sin x/o x 

is computed. The hopefully exact functions jn(X) follow from 

(5) ]n(X) = C*jn(x) 

In a check run now the upper index N is increased by a certain value and the 
computation is repeated. If C is unaffected by the increase of N, the functions jn(x) 
are ready. Otherwise, the index N must be further increased. 

This method of the computation of jn(x) has several drawbacks: 
(a) The determination of the upper index N is awkward and time consuming. 
(b) If N was chosen too high and/or the initial value a in Eq. (3) was too large, 

then number overflow of the computer will occur. 
(c) By putting 1N+1 = 0 in Eq. (3), an error in the "direction" of the recurrence 

relation is introduced besides the harmless scaling error. As a consequence of this 
starting error, a certain number of functions jIi, j,*?i, ..., jN at the upper index 
limit are useless because the error in these functions is too large. Even the number 
of these erroneous functions is unknown. 

These difficulties are avoided by the following method. 
The Neumann functions yn(x) are computed by ascending recurrence up to an 

index N + 1 for which their order of magnitude surpasses a certain preassigned 
value M, that is IYN+1(X) I > 10M, (M > 4). The order of magnitude M is a quantity 
which in most applications is imposed by the degree of numerical accuracy of the 
problem at hand. Then, with sufficient accuracy for these orders of magnitude, the 
relation 

(6) jN(X) -1/(X *.YN+1(X)) 

follows from the cross product 

(7) jn(_)yn-X(x) -jn-(x)yn(X) = 1/x2 

We shall take the value of jN(X) according to Eq. (6) as the trial function JN(x). For 
the evaluation of the trial function 'N+1 we transform the recurrence relation (1) 
into 

2 

(8) gn(x) = x nl( ) = (2n + 1) - ' x 

that is, 

(8a) gn(X) = (2n + 1) - X2/gn+l (X) 

This leads to the continued fraction 
2 2 2 

x ~~x x 
(9) g9(x) = (2n + 1)- 

(2n+ 3)- (2n+ 5)- (2n+ 7)- 
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It converges rather rapidly, provided n > Ixi. A 15-decimal accuracy can be ob- 
tained by typically 10 fractions. 

Computing qN+1(x) yields, together with JN(x), the trial function }+1(X). Now 
the recurrence relation (1) is used in the downward direction, the scale factor is com- 
puted according to Eq. (4) and the functions jn are corrected according to Eq. (5). 
By this method number overflows are avoided, the awkward guess of N is replaced 
by a straightforward determination, the computation of the functions is performed 
up to a problem-oriented order of magnitude and the full accuracy is maintained up 
to the upper index limit N. The computation time for the calculation of the con- 
tinued fraction qN+1(X) is more than compensated by the omission of the check of N 
and by the fact that no surplus functions at the upper index limit have to be re- 
jected for their lack of accuracy. 

The generation of the functions Jn(x) and Yn(x) is based upon the recurrence 
relation 

(10) fn-l(x) + fn+l(x) = 2fnf(x)/x . 

Again, it is used with increasing index n for the computation of the Neumann func- 
tions Yn(x) and with decreasing n for the computation of the Bessel functions Jn(x). 
The starting functions Yo(x) and Yl(x) are obtained from their polynomial repre- 
sentation, [4] through [7]. The calculation of the functions Yn(x) with the help of 
Eq. (10) is continued up to YN+1(x) with I YN+1(x)I > 10M, M > 4. From the 
Wronskian 

(11) JnJ1 (x) Yn (x) - Jn (x) Yn+ (x) 2/1rx 
we take the approximation 

(12) JN (X) -(2/1rx) (1/ YN+1 (x)) 

for one of the starting Bessel functions. With the function Gn(x) defined by 

(13) Gn(X) = xJn_l(X)/Jn(X) 

the recurrence relation 

(14) Gn(x) = 2n - x2/n+G (X) 

is derived from Eq. (10). Again, GN+1(X) is computed by the continued fraction 
2 2 2 

(15) Gn xX= nX (15) Gnx) = 2n2n + 2- 2n + 4- 2n + 6- 

which, together with Nv(x) from Eq. (12), yields the second starting function 
JN+l(x) with which the recurrence relation (10) is entered in the downward direction. 
The scale factor C is computed from 

<NI2> 

(16) C = Jo(x) + 2 <J J2k(X) 
k=1 

(N/2) being the highest integer below or including N/2. Eq. (16) is based upon the 
relation 

(17) 1=Jo(x) + 2. J2k(x) 
k=1 
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Very similar methods can be applied for the generation of the modified Bessel 
functions In(x) and Kn(x). 

With the improvement just described the widely used recurrence techniques are 
very straightforward methods for the generation of the sets of Bessel functions with 
real argument x and varying index n. 
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The Zeros of P' (cos o) and " P' (cos o)* 

By Peter H. Wilcox 

Introduction. In the course of a recent study [1] of the scattering of an electro- 
magnetic wave by a semi-infinite, perfectly conducting cone, it became necessary 
to compute numerically sets of positive zeros of certain associated Legendre func- 
tions treated as functions of their degree; that is, to find vi and Ai, i = 1, 2, 3, * * 
satisfying 

(1) PVi(cos 0) = 0, 
and 

(2) (a/a@) PIi(cos 0) = 0, 
for a given 0. The method presented here employs a trigonometric series expansion 
for the Legendre functions to obtain these zeros. 

Formulas. An expression for the associated Legendre function valid for 0 < 0 < 
1800 is [2] 

3 P(Cos e) = -1/22'+' (sin 0) r(v + y + 1) 
EP{(cos 0) P(v + 3/2) 

(3) ~ js+ 1/)k( '++ l) 
n [(v +Mu+ 2k + 1)0]} 

______ ~ ~ k- k!(v + 3/2)k, 
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