
Construction of Gauss-Christoffel 
Quadrature Formulas 

By Walter Gautschi* 

1. Introduction. Let w(x) be a given function ("weight function") defined on a 
finite or infinite interval (a, b). Consider a sequence of quadrature rules 

fb n 

(1.1) J f(x)w(x)dx - Xrf (n)f(r(n)) n n = 1, 2, 3, 
a r=1 

Each of these rules will be called a Gauss-Christoffel quadrature formula if it has 
maximum degree of exactness, i.e. if (1.1) is an exact equality whenever f is a poly- 
nomial of degree 2n - 1. It is a well-known fact, due to Christoffel [3], that such 
quadrature formulas exist uniquely, provided the weight function w(x) is nonnega- 
tive, integrable with Jb w(x)dx > 0, and such that all its moments 

(1.2) =k =fx kw(x)dx, k = O, 1, 2, * * 

exist. Then, moreover, {r(n) E (a, b), and r (n) > 0. If w(x) is not of constant sign, 
Gauss-Christoffel formulas still exist if certain Hankel determinants in the moments 
are different from zero [21]. In this case, however, some of the abscissas {r(n) may 
fall outside the interval (a, b); in particular, they may become complex. We shall 
call tr(n) the Christoffel abscissas, and Xr (n) the Christoffel weights associated with 
the weight function w(x). 

Gauss [7] originally considered the case w(x) -1 on [-1, 1]. Other classical cases 
are associated with the names of Jacobi, Laguerre, and Hermite. In more recent 
times, the subject has experienced a considerable resurgence, as is evidenced by the 
appearance of numerous numerical tables [15], [21], both relative to classical and 
nonclassical weight functions. The emergence of powerful high-speed computers, 
undoubtedly, has been a major force in this development. Curiously enough, the 
constructive (algorithmic) aspect of the subject, until very recently, has remained at 
the state of development in which it was left by Christoffel, and Stieltjes [20]. The 
generally recommended procedure still consists [1] in constructing the system { Irr 
of orthogonal polynomials associated with the weight function w(x), and to obtain 
{r ) as the zeros of rn, and Xr), in a number of possible ways, in terms of these 
orthogonal polynomials. An alternative procedure, suggested by Rutishauser [19], 
makes use of the quotient-difference algorithm, while Golub and Welsch [11] use 
Francis' QR-transformations to compute {r(n) as eigenvalues of a Jacobi matrix 
and r(n) as the first component of the corresponding eigenvectors. These methods, 
as interesting as they are, appear to be computationally feasible, for large n, only 
if the orthogonal polynomials 7rr, or the associated Stieltjes continued fraction, are 
explicitly known. Otherwise, they are subject to severe numerical instability, 
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making it virtually impossible to obtain meaningful answers, unless one resorts to 
multiple-precision work. 

The reason for this is the ill-conditioned character of the problem which these 
methods attempt to solve. The problem, basically, is the purely algebraic one of 
deriving {?(n), X?(n) from the first 2n moments of w(x), i.e. of solving the algebraic 
system of equations 

n 
(1.3) E jjnr) [Ir' ]k = Ik (k = 0, 1, 2, ... , 2n - 1) . 

r=1 

It will be shown (Section 2) that for a finite interval (0, 1) the (asymptotic, relative) 
condition number Kn for this problem can be estimated from below by 

(1.4) Kn > min (AO, ) 1ma<x {(1 + ) k==k$r (+n)) (} 

Considering that the abscissas tr for large n, tend to cluster near the endpoints 
of the interval (0, 1), many of the differences {r(n) - k (n) will be quite small in abso- 
lute value. Consequently, some of the products in (1.4), and thus the lower bound 
for Kn are likely to be very large when n is large. 

To give a more concrete idea of just how large Kn may become, we note [22, p. 
309] that for a wide class of weight functions the abscissas tr(n) ultimately (as n 

oo) assume an arc cos-distribution, i.e. 

(1.5) r(n) - (1 + COs Or ) , = (2r - 1)r/2n. 

Replacing the {r(n) in (1.4) by their approximate values in (1.5), one finds that 

(1.6) Kn > min (y1, _) (17 + 6\/8)n >min (, 1 (33*97)n 
\'4 /I 64n2 >mn O0- 64n2 

Numerical values of the lower bound in (1.6), for yo = 1 and a few selected values 
of n, are shown in Table 1. 

TABLE 1 

Lower bound for condition number Kn,, 

n (33.97)n/64n2 

5 2.8 X 104 
10 3.2 X 1011 
15 6.4 X 1018 
20 1.6 X 1026 

It is thus seen that in the presence of rounding errors the above-mentioned 
methods, if they rely on the moments, must be expected to suffer a loss of at least 
11 decimal digits, if n = 10, and a loss of 26 digits, when n = 20. This is well above 
the attrition level one is normally willing to accept! 

The lesson to be learned from this analysis is evident: the moments are not 
suitable, as data, for constructing Gauss-Christoffel quadrature formulas of large 
order n. Apart from the fact that they are not always easy to compute, small 
changes in the moments (due to rounding, for example) may result in very large 
changes in the Christoffel numbers. 
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In Section 3 we propose an alternative procedure for generating Gauss-Christoffel 
formulas, which is based on a suitable discretization of the inner product (f, g) = 

fbf(x)g(x)w(x)dx, and thus bypasses the moments altogether. As the discretization 
is made infinitely fine, the process converges to the desired Christoffel numbers pro- 
vided the singularities of w(x), if any, are located at the endpoints of the interval 
and are monotonic. Extensive tests have shown that the method is reasonably 
accurate, relatively "inexpensive," and requiring only single-precision arithmetic. 
A computer algorithm (in ALGOL) is to appear in [10]. 

Cases may arise in which our method converges very slowly. While approximate 
Christoffel numbers are still obtained, it may be desirable to further improve 
their accuracy. This can be done by applying Newton's method to a system of equa- 
tions, equivalent to (1.3), using as initial approximations the approximate Christoffel 
numbers already obtained. An appropriate procedure for this will be described in 
Section 4. Unfortunately, this iterative refinement calls for the moments of the 
weight function, and therefore is of limited practical value, unless one is prepared 
to use higher-precision work in some preliminary parts of the computation. 

The ability to generate Gauss-Christoffel quadrature formulas, as needed, is of 
considerable practical interest, not only for integrating singular functions, but also 
for the numerical solution of integral equations and boundary value problems. We 
also remark that this new capability may well be useful in future systems of "auto- 
mated numerical analysis," such as the NAPSS system currently under development 
at Purdue University [18]. 

In the appendix are collected a few general properties, more or less known, of 
orthogonal polynomials which are relevant to our discussion in Sections 3, 4. 

Extensions of our work seem possible to quadrature formulas of maximum de- 
gree of exactness, where some of the abscissas are prescribed, or the quadrature 
sum involves derivative values as well as function values. Such generalizations, 
however, will not be considered here. 

2. Condition of the Classical Approach. In this section we discuss the con- 
dition of the problem of solving the system of algebraic equations (1.3). In particular 
we derive the estimates (1.4) and (1.6) for the asymptotic condition number, and 
compare them with the condition of inverting Hilbert matrices. 

It will be useful, first, to consider the condition of a mapping M, say, from one 
normed space X into another, Y: 

M: X-*Y. 

Following Rice [17], we define the (relative) b-condition number K(6) of M at xo E X 
by 

(2.1) K(6) -ef max flM(xo + h)-MxoH / a 

Thus, K(S) represents the maximum amount by which a (relative) perturbation in 
the space X, as given by /1 xofl , is magnified under the mapping M. Since the 
perturbations to be considered are small (rounding errors!) it is natural to consider 
the (relative) asymptotic condition number K of M at xo, as defined by 
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(2.2) K = lim K(6), 
8-0 

where the existence of the limit, of course, is assumed. 
In solving the system of equations (1.3) we are dealing with the mapping M: 

X -* Y of a 2n-dimensional Euclidean space into itself, if we identify X with the 
"moment space," and Y with the space of Christoffel numbers. This mapping is 
one-to-one in the neighborhood of the exact solution of (1.3). We may write (1.3) 
in the compact form 

(2.3) F(y) = x 

where xT = (gSO, pi*, ,/2n-1), yT = (X1n ** * Xn, t1, * * ) FT = (F1, F2, *.*. 

F2n), and 

n 
(2.4) Fk(Y) = X rkr (lo 1, 2, .*, 2n) 

r=l 

The (relative) asymptotic condition number K = Kn for solving the nonlinear 
system of equations (2.3) at xo is well known to be (cf. [17]) 

(2.5) Kn = 1] jj[Fy(yo)] 1j, 

where yo is the solution of F(y) = xo, and Fv(y) denotes the Jacobian matrix of F. 
The matrix norm in (2.5) is assumed to be subordinate to the vector norm chosen 
in X and Y. From (2.4) we obtain by a simple computation that 

(2.6) Fy(yo)= = A 

where 

1 *--1 0 0.. O 

* n 1 .*- 1 

t2 . . .4 t2 .2 *- 
. 

S 

(2.7) L = 2n-1 . 2n-1 (2n - 1)4 n * (2n - 1 )2n 

1 

1 

X2 

. 
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(For simplicity, we have written r for t,(n), and X, for X,W.) Hence, by (2.5), 

(2.8) K= l xoIl ||A -'j|| n l1yoll 
We now choose our norms. We take as vector norm llxll = maxk Ixkl, and corre- 

spondingly as matrix norm IA jj = maxk Z I akrl. We further assume the basic 
interval to be (0, 1), and w(x) ? 0. Clearly, llxol ? />0. Since Xr > 0, and r=l Xr= 

/10, we have Xr < /u0. Also, 0 < {r < 1. Therefore, 

IIyoll = max.(Xr, kr) < max (1, /uo) 
r 

Moreover, with the matrix norm as defined, 

I IA-1 -1II > min (1, 1/LLo) I I I 

It thus follows from (2.8), that 

Kn > /Omin (1, 17/uo) 110) 
max (1, /1o) 

or, equivalently, 

(2.9) Kn > min (/10, 1//1o)||Z1jj 

Further discussion now hinges on obtaining a lower bound for 11 j, where S is 
the matrix in (2.7), a confluent Vandermonde matrix [8]. 

THEOREM 2.1. Let 41, *22 * * be mutually distinct positive numbers, and F the 
matrix defined in (2.7). Then 

(2.10) u1 < jj Z-jj ? max (Ui, U2) , 

where I * denotes the maximum row sum norm, and 

(2.11) ui = max bri k ( Q + )k ) (i = 1 2), 
1<r<n k=1; kr {r 

- 
4 

(2.12) br(j) = 1 + .rj br = 1+ 2r E - Sk +2 k=k r -2 

Proof. It was shown in [8] that 

LBJ 
where A = (ars), B (brs.) are (n X 2n)-matrices satisfying 

(2.13) E lars| _< br(2 II ( k) E lbrsl = br()g(1+{ 8cl kOr tr - (k s=l kOr tr 
- k 

Letting 

2n 2n 

a = max E larsl fl=max E bral, 
1_ r<n s=1 1<r<n s=1 

we have by (2.11) and (2.13), a _< U2, ui = uy. Now, either a ? ,B, or a > ,. In the 
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first case, ul l-'l = = ui, in the second case, u1 < II 1 = a ? U2. Hence, (2.10) 
holds in either case, and Theorem 2.1 is proved. 

We remark that in the case ui ? u2 we have u -'fl = 1. 
Applying Theorem 2.1 to (2.9), we obtain 

(2.14) K, > min(qo,?)max {(1 + 1) H (? )2}t 
IA G 1<= r_ k 96 r t r - (k f 

the result already stated in (1.4). 
Using the approximations (cf. (1.5)) 

(r 2(1 + Xr) Xr = cos Or, Or = (2r - 1)7r/2n, 

where xr are the zeros of the Chebyshev polynomial Tn(x), we may estimate 

15 /;+ (1 =r - - (3 + xr) 11(S+ . (2.15) (1 + ~ r~r)H(? k) 2 4k(3+Xr XH( -X) 

1 r Tn(3) _2 >1 r (3) -_ 
2 

2(3+ Xr) LTn (xr)2 8 -Tn3(Xr)2 

We have 

(2.16) Tn'(Xr) = Tn'(cos0r) = n (n- r) = (- 1) -i . Sin Or Sin Or7 

Now the maximum in (2.14) is obviously larger than the respective expression 
evaluated for any fixed r = ro. Choosing rO = [n/2] + 1, we obtain in view of (2.15), 
(2.16) 

1mi 1 i CT(3)]2 cn = 1 (n odd), 
8 L o- L n J Cn = cos (r/2n) (n even) * 

Since cos (ir/2n) > 1/ W 2 (n > 2), it follows that c,, > 1/ >I2, and so 

K,, i (1/16n2) min (Mo, 1/,go)[Tn(3)]2 

As is well known, zn = Tn(3) satisfies 

zn 1 -6z. + Zn_ 1 = 0, z0 = 1, z = 3 
Hence, using standard results from the theory of linear difference equations, 

Zn = T.n(3) =I (tl"' + t2 n) ti = 3 + -i8 t2 = 3 - -V8. 

It follows that Tn(3) > Itln, and we fliially obtain 

(.)i( 1 (17 + 6V/8) 
(2.17) K,, >5 mmn /o, - / 642 

the result already stated in (1.6). 
We note from (2.17) that Kn grows at least at a rate essentially equal to 

exp [n ln (17 + 6 lI 8)] = exp (3.5255 ... n). Surprisingly, this coincides with 
the rate of growth of the (Turing) condition number for the nth order segment of 

* We use the symbol i to remind the reader that we are nlow dealiing with an approximate 
lower botunid. 
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the Hilbert matrix, as estimated by Todd [23]. Computing Christoffel numbers on 
the interval (0, 1) from given moments is therefore about as ill-conditioned as the 
inversion of Hilbert matrices! 

3. Computation of Christoffel Numbers by Orthogonal Polynomials of a Discrete 
Variable. We begin with the classical construction due to Christoffel. We introduce 
the inner product 

rb 

(3.1) (f, g) = f (x)g(x)w(x)dx, 

and let { r,}r o denote the associated orthonormal polynomials (cf. Example 1 of 
the appendix), 

(3.2) (r, 718) = rs, degree (1r,) = r. 

Let {r (n) be the zeros of 7rn(x) in (say) increasing order. Then tr(n) are precisely the 
Christoffel abscissas corresponding to the weight function w(x). The Christoffel 
weights can be found, e.g., from 

(3.3) Xr~ 
(n 

=1- [7rk r )] 

This representation is particularly suitable for computation since it involves the 
summation of positive terms. 

It seems appropriate, at this point, to distinguish two cases: 
(a) The polynomials {Jr,} are known explicitly, i.e. either the coefficients of 

7r,(x), or the coefficients in the three-term recurrence relation [cf. (A.7)], * are 
known in closed form. We may refer to this as the classical case, and call the corre- 
sponding weight functions "classical." In this case the approach just outlined is 
entirely satisfactory for computational purposes. 

(b) The polynomials { r } are not explicitly known. We refer to this as the non- 
classical case, and call the corresponding weight functions "nonclassical." In this 
case it is necessary to progressively generate either the coefficients of rr(X), or the 
coefficients in the three-term recurrence relation for the 7rr. This amounts to an 
orthogonalization of the successive powers, and hence requires knowledge of the 
moments of the given weight function. We are therefore in essence solving the ill- 
conditioned problem discussed in Section 2, and must thus be prepared to encounter 
severe numerical instability. 

The following approach is specifically designed to handle the case of nonclassical 
weight functions. 

Let 

N 
QN (') - E Wk (Xk), Wk > 0, N > n, 

k=1 

denote a sequence of auxiliary quadrature formulas with positive weights, 

(3.4) QN (4) f 4(x)dx . 

* (A.7) refers to formula (7) of the appendix. 
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We assume first (a, b) a finite interval, say (-1, 1) for definiteness. We define a 
new inner product, 

(3.5) [f, g I ATf- QN (f9W) 

that is, more explicitly, 
N 

k=1 

Since Wk (N) > 0 (we assume here that W(xk(X)) i? 0 for k = 1, 2, *, N), the inner 
product (3.5') gives rise to a set {17r,N I} N-1 of orthonormal polynomials of a discrete 
variable (cf. Example 2 of the appendix), 

(3.6) [7rr,N 7rN]N = &rs , r, s = 0 1, 2, *.. ̂,N - 1. 

These polynomials may be generated as described in the appendix. The process re- 
quires the computation of inner products of the form (3.5'), which in turn requires 
only a finite summation and the evaluation of w(x) at the points xk(N) (no moments!). 

In analogy with the classical approach we now define %r, to be the zeros of 
'fln,N(X) (known to be real), and let 

(3.7) r,N nz 1 ([k n) )]2- 
Ek=O [7rk,N (r,N 

The {W' X%n). suitably ordered, are taken to approximate tr(n), Xr(n), respectively. 
These approximations depend on the parameter N, and hopefully converge to the 
desired Christoffel numbers as N -* oo. 

We may now rephrase Theorem 4 of the appendix, and its Corollary, as follows: 
THEOREM 3.1. Suppose that limN,,, [f, gbr = (f, g), whenever f and g are poly- 

nomials. Then 

(3.8) lim r,,N (X) = lr (X) 
N-1 oo 

and 

liM ~~(n) (n) iim x ~(n) n (3.9) ,(n) (n) r,N r 
N-.boo N-boo 

Under the assumption of Theorem 3.1, our construction thus yields a convergent 
process. The stated assumption, in essence, requires that the quadrature rule QN in 
(3.4) be convergent for integrands of the form 4(x) = p(x)w(x), where p(x) is a 
polynomial, and w(x) is the given weight function. Since w(x) might be singular, 
we require, in other words, convergence of the quadrature rule in the presence of singu- 
larities. Fortunately, most of the common quadrature formulas do converge, even 
in the presence of singularities, particularly if the singularities occur at the endpoints 
of the interval and are monotonic [5], [16]. 

From the computational point of view, convergence alone, while desirable, is 
far from sufficient. Practical considerations lead us to impose the following addi- 
tional requirements on the quadrature rules QN: 

(i) Convergence should be reasonably fast, even in the presence of singularities; 
(ii) The quadrature rule QN should be easy to generate for arbitrary, and 

especially large, values of N; 
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(iii) The interval [xi N), x2(N), **, XN(N)1 spanned by x1(N), X2V, XN) should 
contain the desired Christoffel abscissas {,W, 

.. * , (n). 

The first requirement assures that the value of N, necessary for given accuracy, 
is not excessively large. This is important, since the work involved in generating 
the discrete polynomials lr,,N is proportional to N. The second requirement pro- 
vides flexibility of the process, and also eliminates the need for storing a large 
number of high-order quadrature formulas in the computer memory. The third 
requirement is necessary because of the known fact that the zeros of 1rT,N(x) are 
all located in the interval [x1(N), - - *, XN (N)]. Since these zeros are supposed to ap- 
proximate the abscissas t,W' these latter had better be contained in that interval! 

These, of course, are hard criteria to accommodate. In view of the tendency of 
the t,(n) to crowd near the endpoints of (-1, 1), requirements (i) and (iii) suggest 
that we choose the abscissas Xk(N) to have the same property. This rules out the 
most common quadrature rules, such as trapezoidal, midpoint, and Simpson rules. 
The classical Gaussian quadrature formula, on the other hand, is in conflict with 
requirement (ii). A quadrature rule which comes close to satisfying all the require- 
ments is the Newton-Cotes formula for the abscissas 

(3.10) X(N) = cos k (N) 0k (2k - 1)r/2N, 

the zeros of the Chebyshev polynomial TN(x). The corresponding weight factors 
Wk(N) can be written down explicitly, as was already pointed out by Fejer [6]. In fact, 

(3.11) WN = N {1 - 2 E 
[ 

os y2mUk)} N m=1 4M _ f 

This takes care of the requirements (ii) and (iii), although it may be argued that 
(3.10), (3.11) require the evaluation of a large number of cosines. Actually, only one 
value of the cosine, viz. cos (7r/2N), is needed, since all the others, both in (3.10) and 
(3.11), can be generated by well-known recurrence formulas! For best accuracy, 
however, it is recommended that only the cosines in (3.11) be computed recursively, 
especially if N is very large (say, exceeding 200). 

As to requirement (i) we have recently shown [9] that the Fejer quadrature 
formula does indeed converge, not only for continuous functions, but also for 
singular functions, provided the singularities occur at the endpoints and are mono- 
tonic. The exact nature of the singularity is otherwise irrelevant. The rate of con- 
vergence, of course, depends on the type of singularity, though in a manner which 
is not well understood at the present time. Numerical experience indicates that 
convergence can be rather fast for some singularities (e.g. logarithmic singularities), 
but discouragingly slow for others (e.g. square-root singularities). 

Another quadrature formula, which might be suitable, is the Gauss-Chebyshev 
formula 

fJ 4(xE (N)N 
1-x)~~~~= 

if it is rewritten in the form 

rl N 

(3.12) 11 Nk(x)dx n 
-1 N~~ (snOj)1( 
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Here we have exact equality if +(x) = p2N-1(X) (1 - X2)-1 /2, where p2N-1(X) is a poly- 
nomial of degree 2N - 1. The formula (3.12) is therefore particularly suitable in 
cases where the weight function w(x) has square-root singularities at the endpoints 
? 1, which is one of the cases where the Fejer formula converges very slowly. 

It is interesting to point out the close kinship between the Fej6r formula (3.10), 
(3.11) and the Gauss-Chebyshev formula (3.12), noting that the right-hand side in 
(3.11) is nothing else but the truncated Fourier expansion of (Ir/N) sin Ok(N), the 
weight factor in (3.12)! 

We may also remark, at this point, that in the process of generating the poly- 
nomials IT,N (r = 0, 1, * , n), one needs to evaluate inner products [f, 9]N only for 
polynomials f, g of degree < n. Using the Fejer quadrature formula, which is of 
interpolatory type, it thus follows from (3.1), (3.5) that for such f and g, [f, gIN = 

(f, g) whenever w(x) is a polynomial of degree m, and N > 2n + m. As a result, our 
process of constructing Christoffel numbers, based on the Fejer formula (3.10), (3.11), 
is exact if w(x) is a polynomial of degree m and N > 2n + m. The process, in this 
case, converges trivially. Similarly, our process of constructing Christoffel numbers, 
based on the Gauss-Chebyshev formula (3.12), is exact if w(x) (1 - X2)-112 and N 
> n. 

Our development so far assumed [-1, 1] as the basic interval. This is no re- 
striction of generality. In fact, the case of an arbitrary finite interval [a, b] is readily 
reduced to the case considered by a linear transformation of the independent vari- 
able. In the case of a half-infinite interval, say (0, oc), let 4(t) be any continuously 
differentiable monotonically increasing function mapping the interval (- 1, 1) onto 
(0, oo ). Then 

(f, g) = f f(x)g(x)w(x)dx= f f(4(t))g(4(t))w(p(t))4'(t)dt, 

and we can proceed as before if we define 

N 

[f, 9gN Wk f= (4P(Xk() 
k=-1 

where now 

Wk (N) = Wk (N)W(4(Xk (N)))4 '(Xk (N)) 

An analogous device applies for a doubly infinite interval (-xo, co), in which case 
+(t) is to map (- 1, 1) onto (- co, cc). Simple transformation funietions, which 
proved satisfactory, are +(t) = (1 + t)/(1 - t) for (0, cc), and +(t) = t/(1 - t2) for 
(-cc, c ). 

We conclude this section with a few comments on the computation of the 
zeros trn) of rn,N(X). We assume that the coefficients ar, br+i in the recurrence 
relation (cf. (A.71*)) 

7rr+l,N(x) = ((x - ar)lrr,N(X) - brirr1,N(x))/br+l 

(3.13) (r = 0,1, ...,n-1), 

lrO,N(X) = [1, 1]N , '7r-,N(X) = 0 

have already been obtained by the methods described in the appendix. We propose 
two different procedures to find the Christoffel abscissas, depending on whether the 
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{,(1) are desired for all k = 1, 2, * * , n, r = 1, 2, * * k, kor i, (n) r = 1, 2, * , n, 

are desired for only one, or a few selected values of n. 
In the first case we apply Newton's method to each of the equations lrk,N(X) 

= 0 (k = 2, 3, ***, n), using Q (k-1) + ,r(k-1))/2 as initial approximation for {,(k) 

(Here, t0(k-1) is equal to a, if a is finite, or a lower bound for (n), if a = - Simi- 
larly {k(k-l) is equal to b, if b is finite, or an upper bound for in(n) if b = .) The 
choice of the initial approximation is motivated by the interlacing property of the 
zeros of rr,N and is normally sufficiently accurate to assure rapid convergence of 
Newton's iteration. Occasionally, however, because of the highly oscillatory charac- 
ter of the polynomials 1Trr,N, it may happen that some of the Newton iterates fall 
astray. For this reason it is recommended that each Newton approximation be 
checked upon whether or not it satisfies the interlacing property. If not, the ap- 
propriate subinterval should be examined more carefully for possible zeros, and 
Newton's iteration repeated with a suitably revised initial approximation. 

In the second case, the zeros tr() may be computed in their natural order, using 
Newton's method in combination with successive deflation. Thus suppose {l = Sl(n) 

is already obtained. We then construct the deflated polynomial (we drop the 
second subscripts N for notational simplicity) 

(3.14) 7rn [1](x) = (7rn(X) - 7rn(,l))/(x - i) 

and compute its smallest zero by Newton's method, using tl as initial approximation. 
Thereafter, we deflate again, and compute the smallest zero of the twice deflated 
polynomial. The process is repeated until all zeros are obtained. We note, that 7rn M 

can be obtained by a recurrence relation very similar to (3.13), namely 

1rr]l(x) = (irr( 1) + (x -ar)irr' (x) - brr] r1(x))/br,+ 

(3.131) (r= 1,2, ...,n-1) 

[ (x) = ro/bi, 7r = 0 

This follows readily from (3.13), and the definitioil (3.14), where n is to be replaced 
by r. (This technique of deflation, in the context of matrices, was already described 
by Wilkinson [24, p. 468ff.]. He also analyzes its numerical stability.) Similarly, the 
m-times deflated polynomial 7rn [ml (x) can be generated from 

[rm](X) = (rr [ml](t) + (x - ar)rr m](x) -brrr- 1(x))Ibr+I 

(3.13m) (r = m, m + 1, ... , n-1), 

lr[ml(x) = [m-Z11/bm [4m3l(X) = 0. 

To avoid undesirable accumulation of error, it is recommended that each deflation 
(except the first) be preceded by a "refinement" of the respective zero using New- 
ton's iteration applied to the original (undeflated) polynomial 7rn(x). 

It should be noted that the initial approximations to the zeros, if successive 
deflations are used, are not as accurate as those used in the first procedure (without 
deflation). 

4. Iterative Refinement of Christoffel Numbers. We assume now that we have 
certain approximations trO, Or? to the desired Christoffel numbers tr(n), X? , which 
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are sufficiently accurate to attempt solving the basic system of algebraic equations 
by Newton's method. The approximations r?, XrO, for example, may have been ob- 
tained by the procedure discussed in Section 3. 

Let {prI 2n-1 be a system of 2n linearly independent polynomials, and define the 
"modified moments" by 

fb 

(4.1) mk pk (X)W (X)dXa 

The basic system of equations (1.3) is obviously equivalent to 
n 

(4.2) x Xr Pk(tr ) - mk (k = 0, 1, 2, *. *, 2n - 1) . 
r-1 

We wish to choose the polynomials pr in such a way that the system (4.2), un- 
like (1.3), is well-conditioned. Ideally, this would be achieved if the Jacobian 
matrix J(X1, * n * *,A; 1, * * * i) of (4.2) evaluated at the exact solution Xr = Xr 

tr = tr(n) is orthogonal. We shall settle for the next best, which is orthogonality of 
J(X10 * Xn,'; V * * *, inO). Since 

PO ) **... PO (n) XlpO'(i1) ... XnpO'(in) 

(4.3) J(Xr; tr) = PI) ... Pi(#n) X1pl'(%i) . .. 
XnPl'(Wn) I 

_p2n-1 1) **... P2n-1(Wn) XpP2n-1(1) ... Xnp'2n-1 ((n) - 

the required orthogonality means that the rows in the matrix (4.3) be mutually 
orthonormal. In terms of the inner product 

n 

(4.4) {f, ga} = r__ [f(tr)g(tr) + (?rO)2f'(trO)9'(r 0 
r=1 

this in turn implies that 

(4.5) {Pr Ps} = ers r, s = O,1, ,2n- 1. 

We are led to the discrete analogue of Grobner polynomials, considered in Example 
3 of the appendix. 

In choosing the polynomials Pr as described, we not only are achieving a well- 
conditioned system of algebraic equations, (4.2), but also assure that the linear 
systems of equations which need to be solved in Newton's method are all well- 
conditioned. This is so because the first of these is exactly orthogonal, while the 
remaining ones are nearly orthogonal. 

Unfortunately, the modified moments (4.1) are not known in advance, and must 
be generated, along with the polynomials Pr. As is shown in the first section of 
the appendix, we have for {pr} the recurrence relation 

pr+l(X) = ((x - ar,r)pr(X) - ar,r-lpr-l(X)- - ar,OpO(X))/br+l 

(4.6) (r-O, 1, * ..., 2n-2) , 
po(X) = 11, 1}-12) 

where the coefficients ars and br+1 can be computed as described in the appendix. 
Let us define, then, 
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rb 

(4.7) Mrk = Pr (X)W (X)dX 

We have, in particular, 

(4.8) mok = POiYk, mrO mrr 

where ,Uk are the moments (1.2) of w(x). From (4.6) and (4.7) we obtain 
/ ~ ~~~r \ 

(4.9) mr+1,k = (mrk+1 - j arsmsk)/br+1. 
s=O 

We may consider mr,k as entries at grid points of the triangular region r > 0, 
k > 0, r + k ? 2n - 1 in the first quadrant of the (r, k)-plane. The entries along 
the vertical boundary of the triangle, by (4.8), are pOMk, which we assume to be 
known. The relation (4.9) then permits to progressively fill in the triangle, proceed- 
ing from left to right. When completed, the entries along the horizontal boundary 
will be found, which by (4.8) are precisely the modified moments mr. 

Our process of iterative refinement thus consists of two parts. First, the genera- 
tion of the orthonormal polynomials Pr and, along with this, the generation of the 
modified moments mr. Second, the solution of the system of equations (4.2) by 
Newton's method. Since the whole process (starting, as it does, with the moments 
/.k) is unstable, and the second part is stable, we conclude that the first part must 
be unstable. In practice, therefore, unless n is small, this part should be carried 
out with high precision. 

5. Examples. We select at random some of the possible applications of our pro- 
cedure to numerical integration, and also point out some of its limitations. The 
examples, of course, could easily be multiplied. For additional numerical examples 
we refer to [10]. 

(a) In the theory of radiative equilibrium of stellar atmospheres one encounters 
integrals of the form 

JQr) = 1 f f(t)E1(It - -rI)dt , 2 

F(r) = 2 f f(t)E2(t - r)dt-2 f f(t)E2Q( - t)dtX 

to evaluate mean intensities and fluxes. Here, f(t) is a known function, and Em(x) 
= f1 e--t t-mdt, the exponential integral. After a suitable change of variables, one 
is thus faced with integrals of the form 

f f(x)Em(x)dx J f(x)EmQ( -x)dx 

Since Em(x) has a logarithmic singularity at x = 0, and an essential singularity at 
x = oo, it is natural to treat Em(x) and Em(- - x) as weight functions, and to apply 
the corresponding Gauss-Christoffel quadrature formulas [2, p. 65ff]. These may be 
constructed by our procedure of Section 3, both singularities being monotonic. A 
20-point formula for w(x) = Ej(x), 0 < x < co, so obtained, may be found in [10]. 

(b) For the evaluation of Fourier coefficients it may be useful to compute 
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21 r f(x)(1-i nx)cx 

by Gaussian quadrature treating the trigonometric factor as a weight function [25]. 
(c) Fourier integrals, such as f o f(x) cos ax dx, may be treated by Gaussian 

quadrature, in a manner described in [14]. This calls for n-point Gauss-Christoffel 
formulas with weight function w(x) = (1 + cos x)/(l + X)2n+s on (0, oo), where 
s > 0 is a suitable number, depending on the behavior of f(x) at x = 00. 

We have here a case of a nonmonotonic singularity (at x = co) and thus no 
theoretical justification for the process of Section 3. The process, accordingly, seems 
to converge very slowly, if at all. To illustrate, we display below the minimum and 
maximum relative errors in the abscissas tr(n) and weights X'(n) for the case s = 1, 
n = 5, and values of N as shown. 

N min. err. WO max. err. WI) min. err. VI) max. err. XVI5) 

20 .00245 .07907 .00250 .30546 

40 .00354 .05818 .00372 .18464 

80 .00584 .18406 .00611 .39220 

160 .00025 .01658 .00021 .04318 

320 .00132 .04617 .00132 .09630 

(d) In an attempt to integrate numerically the remainder term in the Euler- 
Maclaurin sum formula [25], one might use Gauss-Christoffel formulas with weight 
function w(x) = l/x - [1/l] on (0, 1). This function has an infinite number of dis- 
continuities, accumulating at x = 0, and is all but monotonic there. Not surpris- 
ingly, our procedure of Section 3 does not seem to converge, not even for n as small 
as 5, as may be seen from the following results. 

N .1 ,N ,3 ,N O.a N 

100 .04756 .47518 .89997 

200 .04392 .47103 .89932 

400 .04308 .47499 .89983 

800 .04510 .47361 .89968 

APPENDIX. ORTHOGONAL POLYNOMIALS 

We collect here, for easy reference, some elementary properties, computational 
aspects, and examples of orthogonal polynomials which are useful in the context 
of Sections 3 and 4. 

Consider a (real) linear function space S containing the powers xr, 
r = 0, 1, 2, * * *, N, where N may be finite or infinite. Designate by ( , ) an inner 
product in S. The set of orthogonal polynomials, relative to this inner product, will 
be denoted by {Pr }rf=o. Thus, 

(1) (Pr, Ps) = 0 forr 5 s, degree (pr) = r. 
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These polynomials are uniquely determined if we require that each pr has leading 
coefficient one. The orthonormal polynomials will be denoted by pr*. We have 

(2) pr* (X) = CrPr( X) Cr = (Pr, Pr)"2 

1. Recurrence relations. 
THEOREM 1. The orthogonal polynomials in (1), having leading coefficients one, 

satisfy the recurrence relation 

(3) pr+j(x) = (x - ar,r)pr(X) - arr-1pr-i(X) - - ar,opo(X) 

(r =0,1,2, ** * , N-1), 

where 

(4) ar,s = (Xpr, Ps)/(Ps, Ps) (s = 0, 1, 2, *.. , r) 

Proof. It is clear that the polynomials defined by (3), and po(x) = 1, have 
leading coefficients one and correct degrees. A simple computation shows that 
orthogonality of po, pi, , Pr implies orthogonality of po, pil, , Pr+i. Since 
po and pi are orthogonal, Theorem 1 follows by induction. 

A recurrence relation for the orthonormal polynomials pr* could be obtained in 
the obvious manner by substituting (2) into (3). Computationally, it is slightly 
nmore convenient to introduce 

(5) Pr(X) = Cr-lPr(X) = Cr-lpr*(X)/Cr, 

and to transform (3), (4) into 

(3*) Pr+l(x) = (x - ar,r)pr*(x) - a`,r.ip`r1(x) - - a*,opo*(x) 

Pr+l(X) = Pr+i(X)/(Pr+1 Pr+?) 2 

where 

ar 8 = (Xpr*, Ps*) (s = 0, 1, *.. , r) 

THEOREM 2. If the inner product satisfies 

(6) (xf, g) = (f, xg), 

then (3) is a three-term recurrence relation, i.e. 

(7) Pr+l(X) = (x - ar)pr(X) - brPr-l(X) (r = 0, 1, *., N - 1) 

where 

(8) ar = (XPr, Pr)/(Pr, Pr) (r 0, 1, *, N - 1), 

(9) br = (xpr, Pr-)/(Pr-1, Pr-1) = (Pr Pr)/(Pr-1 Pr-i) (r = 1, 2, . . - 1) 

(We adopt the convention, in (7), that p-(x) _0.) 
Proof. By (6) we have (xpr, Ps) = (Pr, xpP) = 0 if s < r - 1, since xp, is a 

polynomial of degree <r - 1, and Pr is orthogonal to every polynomial of degree 
<r. Consequently, by (4), ars = 0 if s < r - 1, and Theorem 2 is a corollary of 
Theorem 1. The second expression for br is obtained by noting that (xpr, Pr-1) 
(Pr, Xpr-1) = (Pr, Pr), since XPri, differs from Pr by a polynomial of degree <r. 
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We may interpret pr(x) of Theorem 2 as the characteristic polynomial 
det (xlr - Jr) of the symmetric tridiagonal matrix 

ao V\bl 

V\bl a, V/b2 

Jr = 

L-\b r_ ar-i 

Since, by the second relation in (9), br > 0, we have that Jr is a Jacobi matrix. 
Consequently, as is well known, the polynomials {pr(x) }IN-' have the Sturm se- 
quence property (cf. [24, p. 300]). In particular, the zeros of Pr separate those of 
Pr+l. 

Using (5), we obtain for the orthonormal polynomials pr* of Theorem 2 the 
recursion 

(7*) pr+?(x) = (x - ar*)pr*(x) - br*p*ri(X), pr+l(x) = Pr+l(x)/b*+1 

where 

ar* = (XPr*, pr*) , br* = (Pr Pr)'2 

This form of the recurrence relation is particularly convenient for computation 
[4, p. 234]. 

Noting that ar* = ar, br* = Wbr, the Gershgorin circle theorem applied to 
the Jacobi matrix Jn permits one to find upper and lower bounds for the zeros of 
pn(x) in terms of the coefficients ar* and br*. 

2. Examples. 
Example 1. Let S = C[-1, 1], the class of continuous functions on [-1, 1] 

(hence N = oo), and let the inner product be defined by 

1 (10) (f, g) f J (x)g (x)w (x)dx. 

Here, w(x) is a weight function assumed to be positive for -1 < x < 1, and such 
that all its moments f Lxrw(x)dx, r = 0,1, 2, *,exist. The inner product (10) 
clearly satisfies (6). 

The recursion (7) can be used, in principle, to generate the orthogonal poly- 
nomials pr(X) successively for r = 1, 2, 3, * * *, starting with pi,(x) _ 0, po(x) = 1. 
In practice, this requires the computation of the inner products in (8), (9), which 
in view of (10) may be problematic, especially if w(x) is a singular function not of 
the standard type w(x) = (1 - x)a(l + x) 3, a > -1, fi > -1. In the latter 
case, Pr are the Jacobi polynomials, and the coefficients ar, br in (7) are known 
explicitly [22]. 

Example 2. Let N = n - 1 be a fixed positive integer, and S the set of poly- 
nomials of degree < N. Define 
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n 
(11) (f, 9) = W Wrf(Xr)g(Xr) 

r=1 

where Wr, xr are fixed real numbers with Wr > 0, Xr F x$ for r 3z s. We note that 
S is an inner product space, since (f, f) = 0 implies f(xr) = 0 (r = 1, 2, ***, n), 
which in turn implies f - 0, f being a polynomial of degree <n. 

In contrast to Example 1, we now have a finite set of orthogonal polynomials 
depending on a parameter, n. To different values of n correspond different sets of 
orthogonal polynomials. As (6) is satisfied, these polynomials again obey the re- 
lations in (7)-(9). The successive computation of the coefficients ar, br is now 
straightforward, since the inner product (11) requires only the evaluation of a 
finite sum. 

Example 3. Let N = 2n - 1 be fixed, and S the set of polynomials of degree 
<N. Define 

n 
(12) (f 9) = E [Urf(Xr)9(Xr) + Vrf'(Xr)g'(Xr)] 

where ur, Vr, xr are fixed real numbers, with ur > 0, vr > 0. As in Example 2 one 
shows that S is an inner-product space. Unlike the previous example, however, 
the inner product now fails to satisfy (6). As a result, the associated orthogonal 
polynomials pr obey the "long" recurrence relation (3). The coefficients ar,8 ap- 
pearing in this relation are different from zero, in general, although in special 
circumstances some of them may vanish (cf. Theorem 3 below). 

While it is true that the recurrence relation is now more complicated, it can 
still be used, as in Example 2, to successively build up the coefficients ar,,. The 
inner products required in (4) are readily computed by the finite summation in 
(12), using for the derivatives the recursion 

(13) pr+l(x) = pr(x) + (x - ar,r)pr'(X) - ar,r_1pr_1(x) - * * * - ar,lpl'(x) 

We remark that the continuous analogues of the polynomials considered in 
Example 3 were recently studied by Grobner [12]. 

3. Symmetry Properties. If w(x) is an even function on (-a, a), where 0 < a 
< o, then the associated orthogonal polynomials satisfy 

Pr(X) = (-l)rpr(-.X) 

In particular, the zeros of Pr are located symmetrically with respect to the origin, 
and x = 0 is a zero of pr if r is odd. 

This property may be used to essentially cut in half the amount of work re- 
quired to construct the Christoffel numbers for an even weight function. Indeed, 
the polynomials pn,e(X) = p2n( x) form a set of orthogonal polynomials relative 
to the inner product 

(f, g) e = f f() (x)w (Vx) dx . V/x 
It follows that the Christoffel numbers `), X(n) of pn,e are related to those of p2n by 

r,= 
[ 2 Xre = 2xr(2) (r = 1, 2, n) 

where (2n) are the positive zeros of p2n and X 2n) the corresponding weight factors. 
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Similarly, the polynomials pn,o(x) = (1/ V/ X)p2n+l( V x) are orthogonal with re- 
spect to the inner product 

ra2 

(f, g)o = f f(x)g(x)V\xw(V\x)dx, 

and their zeros and weight factors are given by 

=r,0 [tr ] Xr,= = 20r,r(2n+1) (r = 1, 2, *.. , n) 

Here again tr(2n+1) denotes the positive zeros of P2n+1 and Xr(2n+l) the corresponding 
weight factors. Moreover, 

ra ~~~n 
j w(x)dx - E X(n)/t(n) = XO (2n+ 

_a ~~~r=1 

is the weight factor corresponding to the zero t0(2n+l) = 0 of p2n+1. 

The inner product (12) may be called equilibrated if 

Xn+l?r = Xl + Xn - Xr 

(14) (r= 1,2, ...,n). 
Un+l?r = ttr, Vn+l_r = Vr 

THEOREM 3. If the inner product (12) is equilibrated, in the sense of (14), then the 
associated orthogonal polynomials pr satisfy 

(15) Pr(X1 + Xn - X) = (-l)rPr(X) 

Moreover, every other coefficient in the recursion (3) is zero, i.e. 

(16) ar,r-2s =? (S = 12 2, 3, . . . ) . 

The proof of Theorem 3 is elementary, and is omitted here. 

4. Discrete vs. Continuous Orthogonal Polynomials. The orthogonal poly- 
nomials of Example 2 may be considered discrete analogues of those in Example 1. 
It is reasonable to expect that the former approach the latter, as n -4 co, if the 
inner product in (11) converges to the inner product in (10). 

THEOREM 4. Let (f, g) denote the inner product in (10), and let 

n 
( 1 7 ) [ f n g ]n Sd~ w rn f (x rn ) g (x r)nl (17) [ff gh n rj r7f)f rl)g~~f 

r=1 

where Wr/) are positive numbers and Xr for each n, are n distinct numbers in 
[-1, 1]. Let { pr } r=o denote the set of orthogonal polynomials associated with (10), and 
{pr,n }'r-- the set of orthogonal polynomials associated with (17). Suppose that 

(18) lim [f, g]n = (f, g) 
n--boo 

whenever f and g are polynomials. Then for each r = 0, 1, 2, * we have the limit 
relation 

(19) lim Pr,n(X) = pr(X) 
n--oo 

for any fixed x, and thus uniformly for x in any finite interval. 
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Proof. We begin with the observation that 
n 

I[f,g]nI < wr(n) max If(x)If max Ig(x)f r=1 -1<x?i -i1?<x 

for any continuous functions f, g, and therefore 

(20) 1 VI g]nl _< Ilfl| I 11| 1[12 l]n 

The polynomials Pr, by Theorem 2, satisfy (7)-(9), while the polynomials pr,,, 

by the same theorem, satisfy 

(21) pr+1,n(X) = (x - ar,n)pr,n(x) - br,npr-l,n(X) 

with 

(22) ar_, 
= [XPr,n, Pr,n]n brn = [XPr,n, Pr-l,n]n 

tpr,n; Pr,n]n [Pr-1,n Pr-1,n]n 

Suppose now that (19) is true for r = s and r = s - 1. We want to show that 

(19) holds for r = s + 1. For this it suffices to show that 

(23) as,n -a8. bs,n ->bs (n -oo) 

since by (21), this implies Ps+l,n(X) -* (X - aS)pS(x) - b,psl(x) = p8+l(x). 
We have 

(24) [ps,n, Ps,n]n = [Ps + (Ps,n - Ps), Ps + (Ps,n - Ps)]n 

= [Ps, Ps]n + 2[ps, Ps,n - Ps]n + [Ps,n - Ps, Ps,n - PsIn. 

The first term on the right, by (18), has the limit (ps, ps) as n - oo. To the second 
term we apply (20), with the result that 

I[ps Ps,n - Ps]nl - I IPsI I IPs,n - psl I[1, 1]n 

Since [1, ln -) (1, 1), and Ps,n -> ps (by assumption), we see that the bound on 
the right tends to zero as n -> oo. By the same reasoning, one shows that the last 
term in (24) also tends to zero. Consequently, 

lim [ps,nPs,n]n = (Ps, Ps). 

In the same manner, analogous limit relations can be established for all the 
other inner products appearing in (22), thus proving (23). 

Since, trivially, po,n -> po, p-,n -+ p-1, the assertion (19) now follows by in- 
duction. 

Theorem 4 may also be obtained from a general theorem of B. R. Kripke [13] 
on best approximation with respect to nearby norms, if one observes that Xr - 

pr,n(X) and Xr - Pr(x) are the best approximations to Xr, from polynomials of 
degree r - 1, in the norms of (17) and (10), respectively. The author is indebted 
to Professor J. R. Rice for this remark. 

COROLLARY. Let the zeros of pr(X), in increasing order, be denoted by 
Xi(r) X2(r) 

. Xr(r), and the zeros of Pr,n(X), in the same order, by x(l) x(r), *. (, 

Under the assumptions of Theorem 4, we have 

(25) lim Xsn = r) , lim pt,n(xXsm) = Pt(X(r) (S = 1, 2, * , r; t < r) 
n--oo n- soo 
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Proof. The first relation in (25) follows from the continuity of the zeros of an 
algebraic equation. The second relation follows from 

pt,n(xs,n) - pt(Xs() = [pt,n(Xs,n) - pt(Xs,n)] + [pt(Xs,n) - pt(Xs )] 

by observing that lPt,n(Xsn) - pt(x )I _ max-<,<, I p t,n (X) - p t (X) - 0 

(n ->oo) and p t(x(s,n) >Pt (X. r)(n --> oo 
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