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1. Introduction. This paper is a continuation of earlier work [5] and it is con- 
cerned with bounding the error of cubatures for a certain class of analytic func- 
tions. This paper describes the application of the hypercircle inequality [12] to the 
problem of numerical multiple integration and the resulting optimal cubatures. A 
convergence theorem is given for the optimal cubatures, as well as numerical ex- 
amples for some particular functions integrated over a square. The optimal cuba- 
tures can be compared with what the author has called minimum norm cubatures 
[5]. New results are given in this paper concerning asymptotic properties of the 
minimum norm cubatures and these, in turn, imply results concerning the optimal 
cubatures. 

2. Derivation of the Optimal Cubatures. The hypercircle inequality was orig- 
inally described by Synge [18] and reformulated by Golomb and Weinberger [12] 
and Davis [10]. It has been used in quadrature theory for analytic functions by 
Valentin [19] and the author [2] and for functions with integrable nth derivative 
by Secrest [15], [16]. In the latter cases, this method leads to the theory of spline 
approximation, which has a large literature to which references can be found in 
Secrest's articles and in the paper by Birkhoff and de Boor [7]. 

The cubatures derived from the hypercircle inequality are "optimal" in a cer- 
tain sense, and hence this name. Suppose that we want to compute L(f) = Jj f, 
for some given function f, where the integral is over the square 0 < x, u < 1, and 
that the following two types of information are available: 

(1) f(Zk, Wk) = ak, k=I, ***, n 

and 

(2) lIfll ? r for some r > 0, 

where the norm is defined below. 
Without some restriction on the function space to which f belon-gs, it need not 

be the case that (1) and (2) imply anything about L(f). We consider certain analytic 
functions that are uniformly bounded in norm. We write the formulas for two 
dimensions and it will be clear how to extend them to N dimensions. Let E, be 
the ellipse with foci at -+1, semimajor axis a, semiminor axis b = (a2 - 1)1 /2, and 
p = (a + b)2. Then E, X E,, is { (z, w): z is in E, and w is in E,,} . To simplify the 
writing, we let p = p', but it will be clear how to alter the formulas for the more 
general case. Let L2(Ep X E,) be the set of functions that are analytic inside 
E, X E, and such that 
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lif1l2 = I ff !f(z, w) l2dxdydudv 
EPXEP 

exists, where z = x + iy, w = u + iv, x, y, i and v are real, and the integral is 
over the region enclosed by Ep XEp. (The four-dimensional real integral above is 
defined to be Ilfl 2.) For simplicity, we denote L2(Ep X Ep) by L2. For the given 
function f, we assume that I If I! ? r and f(Zk, Wk) = ak, where the (Zk, Wk) are in 
Ep X Ep. We define the closed hyperdisc Cn as {g in L2: jqgfj ? r and 
q(Zk Wk) = ak, k = 1, * - *, n }. Let U denote {g in L2: IIjf ? _ r and 
9(Zk, Wk) = 0, k = 1J ,.. , n}. Then the hypercircle inequality can be stated as 
follows 

(3) {L(f) - L(u) ? I ILI I u(r2 - I1U 12)1/2 

where u is the element of least norm in Cn. u has the property that L(u) can be 
considered as the cubature sum (see Eq. (4)), so that the left-hand side of (3) is 
the error made in integrating f. This bound on the error is optimal in the sense 
that it holds for all functions f satisfying (1) and (2), and is an equality for at 
least one such f. 

The space L2 is a Hilbert space, with the inner product 

(f, g) = fffff(z, w)g(z, w)dxdydudv. 

A complete orthonormal sequence is known [5] for L2 and it is the following: 
{pr(z)ps(w)}~rs=O, where pr(Z) 2 {(r + 1)/[l(pr+l - p-r-1)] }112. (z) 
p (w) = 2 { (s + 1)/[7r(p8+l - p-s-1)] 1 22Us(w) and Ur(Z) is the rth Tchebycheff 
polynomial of the second kind. In L2, the functional L and the point functionals 
Lk(f) = f(Zk, Wk) are bounded and hence have representers, by the Riesz repre- 
sentation theorem. Specifically, Lk(f) = (f, hk), where 

hk(Z, W) = P pr(Z)Ps(W)Pr(Zk)Ps(Wk) 
r, s=O 

- , a (r, p) a (s, p) Ur (Z) Us (W) Ur (Zk) Us (Wk) 
r, s 

where a(r, p) = 4(r + l)/[ir(pr+l - p-r-l)]. Also, L(f) = (f, h), where 

h(z, w) = E a(r, p)a(s, p)j3(r)fl(s)Ur (z)Us(W) 
r, s 

and A(r) = [1 + (-_ )r]/(r + 1). The formulas given by Golomb and Weinberger 
can now be applied, the results being the following: 

n 

(4) L(it) = E "VIjaj(hi, h) 
i,j=1 

(5) (U, a) = 'Tij a ja i 
i,jI 

(6;) llLlu ={(h, h) -EI cb7I (h, hi) (h, 
f1/2 

where 4 is the matrix ((hi, hj)) with the inverse matrix -1 = ()-l'). The neces- 
sary inner products are the following: 
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(hi, hi) = a of(r, p)ax(s, P)Ur(ZKr(zj)U"(wK"(wj) 
r, s 

(h, hi) = E a(r, p)a(s, p)3(r)i3(s)Ur(zi)Us(wi) 
r, s 

(h, h) = a a(r, p)a (s, p) {3(r) 3(s) }2. 
r, s 

Also, from the expression for L(u), we see that L(u) = Jn A -ax1, so that 

n 

(7) Ai= (V-i'(hi,h), j=1,**,n. 

We remark that the integration functional L can be taken over an arbitrary 
closed and bounded region in L2, instead of over the square, and that the same 
formulas apply with the change that :(r):(s) is replaced by rr Ur(Z) Us(W). 

3. Convergence of the Optimal Cubatures. Let rn be IL|| U(n) {r2 - I lUnl 12,1/2 

where we have indicated the dependence of the set U and the optimal approxima- 
tion u on n. rrhe convergence question is the following: Under what conditions does 
rn -> 0 as n -) oo ? We remark that we have already made one nontrivial assump- 
tion, which is that our original function f is in Cn, i.e., Cn is not empty, n = 1, 
The author [4] has pointed out some sufficient conditions for this existence as- 
sumption in several one-dimensional cases. However, for more than one dimension, 
the corresponding complex variable results are apparently unknown. In this the- 
orem we consider the complex point functionals Lk(f) = f(Zk, Wk), with Zk and Wk 

complex. 
THEOREM 1. Let X be a Hilbert space with L1, L2, l linearly independent ele- 

ments in the dual space X*. Let f be a function such that IflI < r and Lk(f) = ak 

k = 1, * . . If the Lk are complete in X*, then lim rn = 0. 
The proof of this theorem is independent of the dimension and so is the same 

as that previously given for one dimension [4]. 
In one dimension, if the base points have an accumulation point inside Ep, then 

the point functionals are complete and f is uniquely determined. In more than one 
dimension, an additional assumption must be made to guarantee the completeness 
of such point functionals. 

COROLLARY 1.1 If the points (Zk, Wk) have an accumulation point inside Ep X E, 
and do not lie on any analytic hypersurface, then lim rn = 0. 

We remark that if the points (Zk, Wk) are all real, then the Lk are complete. 
This is the case of the most practical interest, of course. 

It is interesting to note that Theorem 1 holds for any L in X*, so that the same 
theorem yields results on the convergence of optimal schemes for interpolationi, 
numerical differentiation, etc. Theorem 1 also yields results concerning the uniform 
convergence of the minimum norm cubatures. We recall that a sequence of cuba- 
tures Qn converges uniformly means that II -Rn I - 0 as n -> 0 [9]. 

COROLLARY 1.2 If the point functionals Lk are complete, then the corresponding 
minimum norm cubatures converge uniformly. 

Proof. This corollary follows from the fact that J ILI! U (n) - 0 as n -oo and 

IILIIu(n) = minA IIRn||. 

From Corollary 1.2 follows 
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COROLLARY 1.3 The sequence of cubatures which are of minimum norm with re- 
spect to the weights and nodes is uniformly convergent. 

4. Order of Convergence of the Weights of the Minimum Norm Cubatures. In 
the paper that preceded this one, the following result was given: If we have an 
interpolatory cubature of n points with precision d, where n = Cd+2,2, and the 
cubature weights are denoted by Wi, i = 1, * * *, n, then the corresponding mini- 
mum norm weights A i have the property that Ai -> W , i = 1, * * , n, as p -> co. 
The next theorem is a stronger result, which gives the order of this convergence, 
as p - > oo. For a special case of this theorem, the reader is referred to Valentin [19]. 
We consider m-dimensional rules with the vectors of the cubature weights being 
Wk, the vectors of nodes being Zk, k = 1, * * *, n. 

THEOREM 2. Let the Wk and Zk determine a cubature with precision d and let the 
minimum norm weights determined by the Zk be denoted by Ak, with Ek = Ak - Wk- 

Then Ek = Q(p-(d+l)), k = 1, *..., n. 
Proof. We give the proof for two dimensions and a way to extend it to m dimen- 

sions. For the two-dimensional case, we denote the vector Zk by (Zk, Wk). 

The normal equations that result in minimizing II R II are the following 

EAk E E ( r+r r-1) ( s+1 s-l)Ur(Zk)Us(Wk)Ur(Zl)Us(W l) k=l r=O s=O p -p p _p 

00 00 1 r 
S\/ + 

X E 3(r)3(s) r+1 _ ( s+l -s1)Ur(zl)Us(wl) 
1'=0 b'=0 p p p p 

We substitute Wk + Ek for Ak in the above equations and recall that the rule's 
having precision d means that all polynomials in two variables of total degree not 
greater than d are integrated exactly using the weights Wk and nodes (Zk, Wk) 

Hence we can show that 

E EkE [(r + 1) (s + 1)/(Pr+l _ p-r-1) (ps+1 - p s l)]Ur(zk)Us(Wk)Ur(zl)Us(wl) 
k r,s 

iS Q (p- (d+3)) as p -> ?. However, the coefficient matrix of the Ek has elements of 
0(p-2) so that the Ek are of 0(p-(d+l)). 

To extend the above proof to m dimensions, we note that, in the above, 
0(p-(d+1+2)) is replaced by 0(p-(d+l+m)) and O(p-2) by Q(p-m), respectively, which 
yields the same conclusion. Q.E.D. 

We state one corollary pertaining to one-dimensional rules: 
COROLLARY 2.1 If the Zk are given and the Wk are the corresponding interpolatory 

quadrature weights, then Ek is at least 0 (p-n). If the Zk are the Gaussian nodes, then 
Ek = Q(p-2n). 

We note that this corollary can be substantiated numerically from, e.g., Table 
1 in [1]. 

Remark. At the outset of Section 4, we remarked that Theorem 2 is a stronger 
result than the one given in the preceding paper. The earlier line of reasoning should 
not be neglected, however, for the author conjectures that it will lead to the fol- 
lowing result: given the hypotheses of Stroud's Theorem 2 [17], then the weights 
and nodes of the minimum norm cubature converge to the corresponding weights 
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and nodes obtained from the appropriate orthogonal polyniomials in several vari- 
ables. For completeness, we remark that Stroud's theorem states sufficient condi- 
tions for the common zeros of a set of orthogonal polynomials to be used as cuba- 
ture nodes and for the cubature so formed to have precision properties analogous 
to the Gaussian quadratures in one dimension. 

It was remarked in the Introduction that the asymptotic properties of the 
minimum norm cubatures imply results on the asymptotic properties of the op- 
timal cubatures. These results follow from the fact that the optimal cubature 
weights are the same as the minimum norm cubature weights. This remark applies 
only to cubatures with given nodes, of course. 

5. Numerical Examples. This section is concerned with the numerical applica- 
tion of the results given in Section 2. As remarked in Section 4, the weights of the 
optimal cubatures are the same as the weights of the minimum norm cubatures 
with the same nodes, and so these two types of cubature yield the same error. 
However, the bounds on the error are uniformly smaller for the optimal cubatures 
and it is of interest to compare the two bounds to each other as well as to the 
actual error. Two functions are considered on the square -1 _ x, u < 1; namely, 
fi(x. u) = ex+u and f2(x, u) = cos x cos u. Four cubatures are considered and these 
are the following: the cross-product trapezoidal rule T2 X T2, the cross-product 
Gaussian rule G2 X G2, Lyness' nine-point rule [11, p. 141], and the cross-product 
Gaussian rule G3 X G3. Lyness' rule is formed by taking all points symmetric to 
the three generators listed in Table 3. We remark that the fact that 

I LI u = minA I IR. II was used to simplify the calculations. 
The definitions of the symbols in Tables 1-4 are as follows: a is the semimajor 

axis of the ellipse Ep; Ei is the actual error made in integrating f j; B is the error 
bound of the minimum norm cubature; B H is the error bound of the optimal 
cubature, i = 1, 2. The numbers are expressed in floating-point notation, the sign 
and following two digits being the appropriate power of ten. 

TABLE 1. T2 X T2 

a El E2 B1 B2 B1H B2H 

1.2 4.60 +00 2.72 +00 4.18 +01 5.72 +00 4.16 +01 5.72 +00 
1.5 1.41 +00 2.33 +00 5.82 +01 8.31 +00 5.75 +01 8.28 +00 
2.0 2.01 +00 1.91 +00 9.46 +01 1.47 +01 9.41 +01 1.47 +01 
5.0 3.96 +00 1.67 +00 5.86 +03 1.20 +03 5.86 +03 1.20 +03 

TABLE 2. G2 X G2 

a El E2 B1 B2 B1H B2H 

1.2 5.92 -01 3.08 -01 1.55 +01 2.11 +00 1.051 +01 1.76 +00 
1.5 7.81 -02 4.54 -02 7.62 +00 1.09 +00 7.54 +00 1.03 +00 
2.0 3.87 -02 2.52 -02 5.05 +00 7.86 -01 5.04 +00 7.82 -01 
5.0 3.62 -02 2.39 -02 4.13 +01 8.43 +00 4.13 +01 8.43 +00 
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TABLE 3. Lyness Generators: (0. 632456,0.0), (1.0,1.0), (0.0,0.0) 

a El E2 B1 B2 B1H B2H 

1.2 5.62 -01 1.08 -02 1.32 +01 1.81 +00 1.30 +01 1.29 +00 
1.5 2.91 -02 1.93 -03 3.79 +00 5.41 -01 3.74 +00 4.85 -01 
2.0 5.45 -03 6.64 -03 1.26 +00 1.95 -01 1.25 +00 1.89 -01 
5.0 8.32 -03 6.66 -03 1.46 +00 2.99 -01 1.46 +00 2.98 -01 

TABLE 4. G3 X G3 

a El E2 B1 B2 B1H B2H 

1.2 7.76 -02 3.49 -02 5.58 +00 7.63 -01 5.44 +00 5.50 -01 
1.5 2.04 -03 2.14 -04 1.36 +00 1.93 -01 1.34 +00 1.73 -01 
2.0 3.53 -04 2.14 -04 4.42 -01 6.87 -02 4.39 -01 6.65 -02 
5.0 3.08 -04 2.07 -04 5.13 -01 1.05 -01 5.13 -01 1.05 -01 

6. Conclusions. For fixed nodes the error bound (3) given by the hypercircle 
inequality is the smallest possible. Thus, it is perhaps surprising that these error 
bounds are so little better than the error bounds of the minimum norm cubatures 
in the numerical examples of Section 5. We observe that both bounds are con- 
servative in these examples, being on the order of 102 to 103 larger than the actual 
errors. However, there is a function in the hyperdisc C for which the error bound 
is the actual error and so the bounds are not always conservative. 

If we consider the cubature nodes as variable, then various improvements sug- 
gest themselves. Two of these are minimum norm cubatures with variable nodes 
and optimal cubatures with the error bound (3) minimized with respect to the 
nodes. The former possibility is currently under investigation and a variation of 
the latter, for one dimension, has been considered [3]. 

We conclude with a few remarks of interest to users of these cubature rules. 
For given nodes and integration over the square, formulas (3)-(7) yield the cor- 
responding optimal cubature and error bound. As remarked in Section 2, optimal 
cubatures over other regions can be derived if Ur(z)U8(w) can be integrated over 
the region. If the products of the Tchebycheff polynomials cannot be integrated 
over the region of interest, then, assuming that the functions to be integrated are 
analytic in a sufficiently large region, we can use a different Hilbert space of func- 
tions which has the feature that products of the complex monomials zrw8 form a 
complete orthogonal system. This Hilbert space consists of functions analytic in- 
side the cross-product of two circles and bounded in the L2-norm over this cross- 
product region. For nmore information on this space the reader is referred to [6], 
[8], [19]. 
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