
An Improved Method for the Numerical Solution 
of the Suspension Bridge Deflection Equations* 

By R. W. Dickey 

1. Introduction. The purpose of this paper is to indicate an improved method 
for obtaining numerical solutions of the suspension bridge deflection equations. 

For simplicity consider a suspension bridge consisting of a single span of length 
1. The vertical deflection of the roadway w(x) satisfies the ordinary differential 
equation (cf. [1, pp. 75ff]): 

d2 d2 d2w 
(1.1)dEI _ (H+h) P(x) h Q(x) dx dx dx ) 

with boundary conditions 

(1.2a) w(O) = w(l) = 0 

and 

(1.2b) w"(0) = w"(l) = 0 

(the prime indicates differentiation with respect to x). P(x) and Q(x) (positive 
downward) are the live load per unit length and the dead load of the roadway, 
cable, and hangers per unit length. E and I (assumed constants) are the modulus 
of elasticity and moment of inertia of the roadway and H (constant) is the hori- 
zontal dead-load tension in the cable. The term h (constant), the induced live-load 
tension, depends on the vertical deflection w(x) as follows (cf. [1]): 

(1.3) h = Hli Q(x)w(x)dx 

where Ee is the modulus of elasticity of the cable, A, is the cross-sectional area of 
the cable, and 1, is the length of the cable. Thus the Eq. (1.1) is nonlinear in w. 

Heller, Isaacson, and Stoker [2] treated the Eqs. (1.1) and (1.3) with bound- 
ary conditions (1.2) by solving a sequence of linear problems. Thus (1.1) was first 
solved with h = 0, and the solution of (1.1) was used in conjunction with (1.3) to 
calculate a new value of h. This new value of h was placed in Eq. (1.1) and (1.1) 
was resolved for w. This process was then repeated. Although this iteration scheme 
converged, it converged to a solution with H + h < 0, i.e. the cable was in com- 
pression.t The existence of these physically unrealistic 'compressive' solutions 
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t In [2] it was shown that in the case of constant live and dead loads there were infinitely 
many 'compressive' solutions, but only one solution with H + h > 0, i.e. corresponding to a 
tension in the cable. 
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forced the authors of [2] to introduce an extrapolation factor-depending in a com- 
plicated way on the loads and physical characteristics of the suspension bridge- 
so that at each step the cable was in tension. In this way a solution was obtained 
withH + h > O. 

In Section 2 of this paper the difficulties encountered in [2] will be avoided by 
reformulating the Eqs. (1.1) and (1.3) so as to eliminate the 'compressive' solu- 
tions. In this way it will be possible to prove the existence of a unique solution to 
(1.1) and (1.3) (under arbitrary loads) having H + h > 0, and to construct a 
numerical procedure which converges to this solution regardless of the loads and 
physical characteristics of the suspension bridge. 

2. The Solution. It was observed in the previous section that (1.1) is nonlinear 
due to the appearance in the equation of the induced live-load tension h. If h were 
known, (1.1) would be a linear equation with constant coefficients and could be 
solved by standard techniques. Thus the objective will be to eliminate w between 
Eqs. (1.1) and (1.3) leaving a single equation for h. For this purpose (1.1) may 
be integrated twice to yield 

(2.1) EI - (H + h)w = A + Bx + {P(Tr) - Q(T)}ddTd 

where A and B are constants to be determined from the boundary conditions (1.2). 
Equation (2.1) may be simplified by an integration by parts. The result is 

EI 
d.2W _ (H + h)w = A + BX + X JO {(T) Q (,r fd 

(2.2) 
X 

- {P(T) - 4 Q(T) }dr. 

It is easily shown that the boundary conditions (1.2) and Eq. (2.2) imply that 
A = O and 

B -t {Q (T) }d + f t {P (T) - Q (Tr)}d , 

so that (2.2) becomes 

d2w x H,h\XfU 4 h 
EI d2 -(H + h)w= _p t lI) (T) _ h Q(Tr)}d 

(2.3) 2 {P - H Q(T)}dT - flx(l rP (T) - yQ (r)}dr 

or, in simpler notation, 

(2.4) d2W_ (H +h)w jf(,r{() hj(r,d 
(2.4) dx I= EItK (x, r) P (T) - H-Q (T) }dT dX2 El 

where 

(2.5) K(x,r) =(l-x)T/l, 0 ?Tr 
< X, 

=X(1-V)/1, x?<r?<. 
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The Green's function for (2.4) with a given h will have one of two forms de- 
pending on whether H + h > 0 or H + h < 0. Thus in the case H + h > 0 the 
Green's function becomes (cf. [3, pp. 351ff]) 

G+(x, ; h) - sinh XA sinh X(1 - x) 0 < x 
(2.6) X sinh Xl 

=sinh Xx sinh X(1 -) < < 
X sinh Xl 

and in the case H + h < 0 

sin X sinX (1 - x) 
G_ (, 

~ 
h) X sin Xl ' 

(2.7) 
_ sin Xx sin X(l - < 

In both (2.6) and (2.7) 

(2.8) X = (IH + hj/EI)l2. 

The effect of the distinct Green's functions (2.6) and (2.7) is to permit a division 
of the problem into two parts-one of which corresponds to a tension in the cable 
and the other to a compression. Since, as was indicated previously, the solution 
corresponding to a tension in the cable (i.e. H + h > 0) is the reasonable choice, 
the vertical deflection w may be written 

(2.9) W = EIf {G+(x, 2; h) fK(S, T)(P(T) - H Q(T))dT}dU. 

This expressi )n for w may be used with (1.3) to find an equation for h, i.e. 

h = EIHIj [Q (x) f {G+(x, {; h) f K(, r)(P(T) - H Q(T))dr}dd]dx 

=F(h). 

It is clear that any solution of Eqs. (1.1) and (1.3) having H + h > 0 and 
satisfying the boundary conditions (1.2) is a solution of (2.9) and (2.10). Con- 
versely any solution of (2.9) and (2.10) is a solution of (1.1) and (1.3) and satisfies 
the boundary conditions (1.2). Moreover, any solution of (2.10) has h > 0 (so that 
H + h > 0). To show this it is only necessary to note that G+(x, t; h) ? 0 and 
K(%, r) > 0 (recall that P and Q are positive downward), so that h < 0 implies 
that F(h) > 0 (cf. (2.10)). Hence (2.10) cannot have a solution with h < 0. 

It is equally easy to show that there is a solution of (2.10) for h > 0. Consider 
the two curves defined by 

(2.11a) y= h, 

(2.11b) y =F(h), 

and note that an intersection of these two continuous curves corresponds to a 
solution of (2.10). However, at h = 0, F(h) > 0 while it is clear that F(h) < 0 
if h is sufficiently large (cf. (2.10)). Thus the two curves do intersect and a solu- 
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tion of (2.10) certainly exists. This result may be restated as 
THEOREM. The Eqs. (1.1) and (1.3) with boundary condition (1.2) have a solution 

such that H + h > 0. 
In the preceding discussion it has been shown that there exists a solution of 

(1.1) and (1.3) having h > 0. It will now be shown that this solution is unique if 
the horizontal dead-load tension H is sufficiently large. It is convenient to begin 
by discussing the Green's function (2.1). 

LEMMA. G+(x, (; h) and I cG+(x, t; h)/Ohl are nonincreasing functions of h and H 
for all x and t in the interval (0, 1). 

Proof. Let f(x) be any nonnegative function. The solution of the differential 
equation 

(2.12) W"- (H + h)W/EI = -f(x) 

with boundary conditions (1.2a) may be written in the form 

(2.13) W fG+(x,I ; h) f (t)d. 

From the representation (2.13) it follows that W(x; h) > 0 for 0 < x ? 1 and that 
Wh(x; h), the derivative of W with respect to h, exists. Since W is a solution of 
(2.12) with boundary conditions (1.2a), Wh must be a solution of 

(2.14) Wh" - (H + h)Wh/EI = WIEI 

with boundary conditions (1.2a). Thus Wh may be written in the form 

(2.15) Wh - GI | +(XI t; h) W(t; h)d . 

Since W(x; h) is nonnegative (2.15) implies that Wh(x; h) ? 0 if 0 <_ x < 1 or 
from (2.13) 

(2.16) Wh = ahG+ (x,I;h)f(t)dS < 0 

if 0 < x ? 1. Since the inequality (2.16) holds for all nonnegative functions f(x) 
it follows that 

(2.17) dG+(x, t; h)/8h < 0 

if x and t are in the interval (0, 1). In order to discuss the behavior of 
8G+(x, t; h)/lhl it suffices to compare (2.15) and (2.16). Thus 

G+ (x, t; h) f() + EI G+(x, t; h)W(t; h) dS = 0 

for all nonnegative functions f(x). Using (2.13) and interchanging the order of 
integration it is found that 

(2.18) L h { G G+(x, {; h) + LEl G+(x, r; h)G+(t, r; h)drj} f ()dt = 0. 

In view of (2.18) (recall that f(x) is an arbitrary nonnegative function) it is clear 
that 
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(2.19) ah G+(x, S; h) - - l G+(x, r; h)G+(S, r; h)dT. 

Since G+(x, t; h) is a nonincreasing function of h it follows that IOG+(x, t; h)/ahl 
is a nonincreasing function of h and, hence, is bounded. In view of the way H oc- 
curs in Eq. (2.14) it is clear that the preceding remarks also hold when G+(x, t; h) 
is treated as a function of H. This completes the proof of the lemma. 

The function P(x) - hQ(x)/H (cf. (2.10)) is a monotone decreasing function 
of h. Therefore the right side of (2.10) is monotone decreasing as long as 
P(x) -hQ(x)/H > 0. For example, if P and Q are constant F(h) = 0 (cf. (2.10)) 
at h = HP/Q. If h < HP/Q the lemma implies that F(h) is monotone decreasing, 
and if h > HP/Q the function F(h) is negative. Since h, i.e. the left side of (2.10), 
is positive and monotone increasing it is clear that 

COROLLARY. If P and Q are constant the Eqs. (1.1) and (1.3) with boundary con- 
ditions (1.2) have exactly one solution satisfying the condition H + h > 0. 

If the functions P(x) and Q(x) are not constant there will in general be a range 
of h for which P(x) - hQ(x)/H oscillates about zero. For h in this range it is not 
clear that F(h) is monotone. Thus it is necessary to proceed in a different manner. 

In order to simplify the notation introduce 

L (H2 h y) -E |ol [Q(x) L {G+(x, t; h) f K(, r)'y(r)dt}d ]dx 

In this notation (2.10) becomes 

h = L(H, h, P)- hL(H, h, Q)/H 

or 

(2.20) h = 1 L(H h, P) M(H, h, P, Q). 1+ L(H, h, Q)/H 

The object now will be to show that the slope of the right side of (2.20) is less than 
one. From this fact the uniqueness of the solution of (2.20) (and hence (2.10)) 
would follow. Upon differentiation of (2.20) it is found that 

OM(H, h, P, Q) H ha L(H2 h, P) + ( h, P) aa L(H, h, P) 

(1h (1 + H L(H, h, Q)) 

(2.21)H 
L(H, h, P) a L(H, h, Q) 

H ah 
/ 1 \2 

- +(1?L(H,h,Q)) 

The first term on the right of (2.21) is negative. Therefore it suffices to show that 
the second term is less than one. Because of the monotonicity properties of 
G+(x, t; h) and O8G+(x, t; h)/OhI it is clear that 

L(H, h, P) a L(H, h, Q) < L(H,0P) a0 (H, 0Q) 
H Oh = H Oh 
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In addition L(H, 0, P) and IOL(H, 0, Q)/Ohf are nonincreasing functions of H. 
Thus it is possible to choose H so large that 

(1/H) IL(H, 0, P)(OL(H, 0, Q))/OhI < 1. 

Since the denominator of (2.21) is clearly greater than one it follows that for H 
sufficiently large OM(H, h, P, Q)/Oh < 1 and hence the solution of (2.20) is unique. 
Therefore 

THEOREM. For all functions P(x) and Q(x) ( > 0) there exists a number H* such 
that H > H* implies that the solution of (2.10) is unique. 

Since the preceding remarks guarantee that the solution of (2.10) will have 
H + h > 0 it only remains to construct a numerical procedure for the solution of 
(2.10)-or equivalently a procedure for the solution of the simultaneous equations 
(2.11). For this purpose the method of false position, Regula Falsi, was employed. 
Thus (2.11b) was evaluated for two values of h, e.g. ho and hi, so that yo = F(ho) 
and yi = F(h1). A new value of h, say h2, was chosen as the point of intersection 
of the curve (2.1la) and the chord connecting (ho, yo) and (hi, yi). The equation 
of the chord is given by 

(2.22) y = Yi + i - o(h-ho) 

so that h2, the value of h for which (2.22) and (2.1la) intersect becomes 

h2 = ( yoh1 - hoy ) 
(hi - ho) - (y, - yo) 

This process was then repeated, i.e. h3 was computed as the point of intersection 
of the curve (2.1 la) and the chord connecting (h1, yi) and (h2, Y2) where 2 = F(h2). 
In general this scheme may be written 

(2.23) h+1 (h yn-hn - hn-ln 
(hn- h-1)- (Yn - Yn-1) 

and 

(2.24) y.+ = (hn+ 

The iteration procedure (2.23) and (2.24) was actually applied to a suspension 
bridge having approximately the same physical characteristics as the center span 
of the Throgs Neck Bridge (the exact data for the Throgs Neck Bridge is given in 
[2]). In order to start the iteration procedure ho was chosen as ho = 0 and different 
choices were made for h1 varying from h1 = 10 lbs/ft2 to h1 = 1 X 106 lbs/ft2 (the 
actual solution for the data used was h = 2.4891 X 105 lbs/ft2). In all cases it 
was found that the iteration scheme converged in no more than five iterations to 
within an error of 4 X 10-5 percent. Thus the scheme converged rapidly even 
though the choice for h1 was not close to the actual solution. 
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