
Convergence Rates of ADI Methods with 
Smooth Initial Error 

By Robert E. Lynch* and John R. Rice** 

1. Introduction. In this paper*** we investigate the Peaceman-Rachford Alter- 
nating Direction Implicit (ADI) method for solving elliptic partial difference equa- 
tions with parameters chosen in such a way as to exploit smoothness properties of 
the initial error. 

The first result of this type was obtained by Guilinger [4]. One interpretation 
of it is as follows. Consider the partial difference equation derived from the two- 
dimensional Poisson problem on a convex polygon by the use of the usual five- 
point approximation on a mesh with spacing h. Make a certain smoothness assump- 
tion on the initial error for the ADI method with one parameter p. Then, given 
e > 0, there is a number K and a parameter p, both independent of h (h sufficiently 
small), such that by the Kth iterate of the ADI scheme, the error has been re- 
duced by a factor of at least e. That is to say, the asymptotic rate of convergence 
of this ADI process with constant p is a constant independent of h. Guilinger uses 
a different normalization of the parameter than other authors; with the usual 
normalization, the parameter p does depend on h. 

We study the effect of smooth initial conditions with the aid of tensor product 
analysis [5]-[7] and extend and clarify Guilinger's result. Our study is both the- 
oretical and experimental. In the theoretical part we: (1) exhibit more clearly the 
role of the smoothness of the initial error; (2) relate the choice of parameters to a 
certain approximation problem; (3) establish the existence, uniqueness, and char- 
acterization results for this approximation problem; (4) obtain precise asymptotic 
results for the case of one parameter and the Poisson problem; and (5) establish 
a general, but imprecise, extension of Guilinger's result. We have also developed 
a computational algorithm for calculating the smooth optimum parameters; it is a 
modification of the one in [3] and the details of it are not included here. 

The use of tensor products is successful because the problems considered are 
separable. In particular, this restricts our analysis to equations of special form (as 
in Eq. (2.2) below) and to rectangular regions. Thus, our results are weaker than 
Guilinger's in this respect. It has been conjectured by several people that there 
exist bounds on the convergence rate for the ADI method applied to the Poisson 

311 

Received June 8, 1966. Revised April 5, 1967. 
* Part of the work was done at the General Motors Research Laboratories, Warren, Michigan. 

Also, support was given, in part, by the National Science Foundation through Grant GP-217 and 
by the Army Research Office (Durham) through Grant DA-ARO(D)-31-124-G388, at The Uni- 
versity of Texas. 

** Purdue University. Part of this work was done at the General Motors Research Laborator- 
ies, Warren, Michigan. 

*** Some preliminary results were announced at the Society of Industrial and Applied Mathe- 
matics Symposium on Matrix Computation, Gatlinburg, Tennessee, April 13-18, 1964; other 
results were presented at the Summer Meeting of the American Mathematical Society, Ithaca, 
New York, September 3, 1965 (Notices Amer. Math. Soc. 12 (1965), 585). 



312 R. E. LYNCH AND J. R. RICE 

problem on a convex region R in terms of the convergence rate on the smallest 
rectangular region containing R. If this conjecture is true, then our results are im- 
mediately applicable to the case considered by Guilinger. 

In the numerical experiments we: (1) study the nature of the optimum param- 
eters and corresponding deviations; (2) study the actual effect of various sets of 
parameters for the Poisson problem with different initial estimates of the solution; 
(3) compare the optimum parameters with discrete optimum parameters for the 
specific matrix of the problem; (4) study the error reduction as a function of initial 
conditions and parameter sets, as the mesh length tends to zero; and (5) study 
the effect on the error reduction of uncertainty in the value of a = X,/XN, the 
ratio of the smallest to the largest eigenvalue associated with the problem. 

A variety of conclusions are presented in the final section. The most important 
is that, with smooth initial error, the number of iterations necessary to achieve a 
given error reduction is independent of mesh length h. Other important conclusions 
are: (1) the Wachspress parameters (4.4) should be used unless precise information 
about the eigenvalues and initial error is available;* (2) the initial error should be 
as smooth as possible; (3) it is better to underestimate than to overestimate the 
ratio a for any of the sets of parameters; (4) an explanation of why the Birkhoff, 
Varga, and Young experiments [2] do not show that their optimum parameters 
are optimum. 

For, problems with smooth solutions, smooth initial error can be achieved by 
use of a proper interpolation procedure. We do not discuss this procedure in detail 
here. We give the following example of one possible approach. For Dirichlet bound- 
ary conditions on a rectangle, initial values in the interior can be obtained from a 
function with two continuous derivatives by using bicubic spline** interpolation 
(see de Boor [12] for interpolation formulas). Then, since both the initial estimate 
and the solution have two continuous derivatives, so does their difference. Smoother 
initial error can be obtained by use of higher degree polynomial spline functions. 
If one has such an interpolation formula for functions of one variable, then, of 
course, the two-variable formula on a square is obtained by forming the tensor 
product of the one-dimension formula with itself. 

2. Problem Statement. Let R denote the unit square { (x, y) 10 < x < 1, 
0 < y < 1}, and let R denote its closure. Consider a second-order linear elliptic 
partial differential equation in two independent variables 

(2.1) 2v = f, (xI y) C R,I 
subject to given Dirichlet conditions on the boundary of R. We assume that the 
operator 42 has the special form 

(2.2) = + v, 

* Such information is available for the Dirichlet problem for the five-point approximation to 
the Laplacian operator on a rectangle. For this and similar cases for which this information is 
available, the smooth parameter theory yields better computational results, as is illustrated in 
Fig. 5. 

** A bicubic spline interpolation function is a piecewise bicubic function with two continuous 
derivatives in the interior of the rectangle which takes on the prescribed values at the boundary 
mesh points. Thus in each mesh rectangle, xm < x < Xm+1, Yn _ y _ ynf+, the function has the 
form i jxiyi. 
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where 4x [2,] is a second-order linear differential operator with derivatives with 
respect to x [y] only and with coefficients which depend on x [y] only. A differ- 
ence approximation to 2x [2,] can be obtained by subdividing the unit interval by 
mesh points O = xo < xi < ... < XN < XN+1 = l [O = yo < y, < ... < YM 
< yM+l = 1] and by replacing derivatives in 2x [2,] with divided differences. The 
solution of the ordinary nonhomogeneous differential equation C?-w = f, [?Cw = f21 
with w given at 0 and 1 is approximated at mesh points xi [yj] by the solution of 
a linear system Awl = b [BW2 = c] where w1 [W2] is a vector and A [B] is an 
N X N [M X M] matrix. A system of linear equations with solution which ap- 
proximates the solution of (2.1) at mesh points (xi, yj) in R can then be obtained 
by means of tensor products (Kronecker products) [5], [6] as 

(2.3) (IM C A + B X IN)u = g, 

where IM, IN are identity matrices of order M and N, respectively. The com- 
ponents of the vector u are taken as approximations to the values of v at mesh 
points (xi, yj); these components are ordered so that the ([i - 1]N + j)th com- 
ponent corresponds to v(xi, yj). The vector g in (2.3) involves values of the right 
side of (2.1) as well as boundary values. For more details and for a description of 
the use of tensor products, see [5], [6] and [7]. 

For a given set of positive parameters, Pk, k = 1, 2, * , the Peaceman-Rach- 
ford ADI iteration scheme [8] for obtaining a solution of (2.3) can be written 
as [3], [5] 

u(0) given, 

(2.4) [IM 0 (A + pk+1IN)]U(k+l12) = g - [(B - pk+IIM) 0 IN]U(k), 

[(B + Pk+1IM) 0 IN]U(k+l) = g -[IM 0 (A - Pk+lIN)]U(k+1 /2). 

Let e(k) = u(k) - u denote the error of the kth iterate, it satisfies 

e(?)= u(?)- u 

(2.5) [IM 0 (A + pk+lIN)e(k+l 2) = -[(B - Pk+1IM) 0 IN]e(k) 

[(B + Pk+1IM) 0 IN]e(k+l) = -[IM 0 (A - pk+lIN)]e(k+l 2) 

We assume that A and B have complete sets of normalized eigenvectors pi 
and qj, respectively. Then, the matrices P and Q whose columns are pi and qj are 
such that 

(2.6) P-1AP = A(A), Q-'BQ = A(B) 

where A(A), A(B) denote diagonal matrices of eigenvalues Xi, gj of A, B, respec- 
tively. It is easily verified that the eigenvectors of (IM 0 A + B 0 IN) are qj 0 pj 
and that (Ai + Xj) are the associated eigenvalues. The error e(m) can be expanded 
in terms of these eigenvectors as 

M N 

(2.7) e(m) = E E aV9)qi (0 p. 
i=l j=1 

By substitution into (2.5) and simplification, the error e (m) can be expressed in 
terms of the coefficients of the initial error as 
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M N m F__ ___ 
(2.8) e(m) = E a?a(?) Xi _ P +P + q? pj. i=1 j=1 k=1 i +Pk A + Pk 

We use two measures of error. The uniform norm is 

Ile") 11 = max I (e(m))k, 11 

in which (e(m))k, denotes the error at the point (Xk, ye). The discrete L2-norm for 
e(m) on an equally spaced grid: xi+ - xi 1/(M + 1) and yj+l - yj = 1/(N + 1), 
is 

M N / 1/2 

Ile(m)l12 = E (e ) 1/ (M + 1) (N+ l) 

Heretofore, for given m, "optimum parameters," P1, P2, ** Pm, have been de- 
fined [2], [6] as those numbers which minimize the maximum value of 

(X - 
Pk Y - Pk 

k= 1 \X + Pk Y + Pk / 

for Xi ? x ? XN, I, < y < ,UM. Denoting the value of this minimax by di,m one 
obtains a bound on e(m) as 

(2.9) (lle(M)112)2 = [a( 1)]2 <d2NM max la ([) 2. 
i,j ij 

But the variation of the coefficients ad?) with i and j has been neglected; equiva- 
lently, the assumption has been made that each value a(.) has equal importance. 
If some additional information concerning these coefficients is available, then a 
different set of parameters can be obtained which yields a smaller upper bound 
on lIe(m)112. 

To study this, we impose the following condition on the initial error. 
SMOOTHNESS ASSUMPTIoN. There are two given positive and bounded functions 

C,I(i), C2(j) such that 

(2.10) a(S)| I< 01 (i)IW2(j) 

To show why (2.10) is a condition on the smoothness of the initial error and 
to illustrate the nature of suitable functions w we discuss the following. 

Example. Suppose -S is the Laplace operator: Lv = -a2v/3x2 - 92v/Iy2, and 
that the mesh is uniform, xi = Yi = i/(N + 1), i = 1, I.., N, and that divided 
central differences are used to obtain the standard five-point approximation to 
Sv = f. Then, the eigenvalues Xi and normalized eigenvectors pi of the matrix 
A (=B) are known [6]: 

(2.11) tXi = [sin2 (Gj/2)]/[sin2 (ON/2)] , 6i = i7r/(N + 1), 
pi = [2/N]'/ (sin Oi, sin 20, * sin NOi), 

where the matrix A is normalized so that its largest eigenvalue, ky, is unity and 
the eigenvectors are normalized with respect to the norm I | *112 

Since we want to use Fourier series and because the difference equation is sep- 
arable, it is natural to expand e(?) in terms of the tensor products, qi 08) pj, of the 
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eigenvectors.* Suppose the solution u has a convergent Fourier expansion and con- 
sider the components of the initial approximation, u(?), to be values of a given func- 
tion which also has a convergent Fourier series on the interior of 7R. For large N, 
the coefficients of the low frequency terms of the finite Fourier expansion of e (0) 

(on the mesh) will be nearly the same as the corresponding coefficients of the 
Fourier expansion of e (0) (on R). There is a well-known relation between the smooth- 
ness of a function and the asymptotic behavior of its Fourier coefficients. In par- 
ticular, [10, p. 50] if a periodic function of one variable has a continuous (p - 1)th 
derivative and if its pth derivative has bounded variation, then its Fourier co- 
efficients aj are O(1/jP+1) as j tends to infinity (this also holds for p = 0 [9, p. 18]). 
Now, suppose that the components of u(?) are taken to be equal to values of a 
constant function on the interior of TR and that, as usual, e (0) = 0 at boundary 
points. Then one would have that, at worst, a() = 0(1/i]), because e(?) would be 
discontinuous only at the boundary of R. Furthermore, if the error were smoother, 
then d9) tends to zero faster as i and j tend to infinity. For example, if the error 
were xy(1 - x)(1 - y), then a(?) = O(1/[ij]). 

Observe that to determine the smoothness at the boundary, it must be speci- 
fied how functions which are zero on the boundary of TR are extended to be periodic 
functions on the whole (x, y)-plane. This extension is made by observing that as 
N tends to infinity, components of the vectors pi/V2 tend to values of sin (i7rx) 
so that the error (2.7) is expanded in terms of products of sines; consequently, 
any function F on R is to be extended to a function on the whole (x, y)-plane 
which is antisymmetric about x = 0 and y = 0 and periodic: F(x + 2, y + 2) = 

F(x, y). 
Below we refer specifically to the following three initial errors on the unit 

square R: 

elP) (x, y) = 1 

(2.12) e2() (X, Y) = C2 rmin [x, y, 1 -x, 1-y] , (x, y) E R 

e38() (x, y) = C3xy (1 - x) (1 - y), 

e (?)X, Y) = 0, (x, y) E R-A, i = 1, 2,3 . 
The normalizing factors are C2 = 2, C3 = 16 for the uniform norm and C2 = 6, 
C3 = 36 for the L2-norm. The Fourier expansions of these initial errors are given by 

el (x, y) = 6 1 sin (m7rx) sin (nmry), X 
7r odd m,n mn 

(2.13) e2(0)(x, y) = C2 A E 1 sin (nlrx) sin (nlry), 
7 odd nfn 

e3 (x, Y) = C36 Ed m 3 sin (mlrx) sin (n7ry). 
7r6odd m,n m n 

* For the example of the Laplace operator, qi = pi. Note that the subsequent analysis is not 
restricted to the case of the five-point approximation to the Laplacian, but it applies to any 
separable difference equation approximation to a separable differential equation. 
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The first two of these satisfy the Smoothness Assumption coi(i) = CO2(i) = I/i, and 
the third satisfies coi(i) = cw2(i) = 1/i'. 

Note that the assumption that the la")l are of equal importance, as in (2.9), is 
equivalent to the Smoothness Assumption coi(i) = CO2(i) = 1 and, moreover, if 
a(?) = 1, the sine series with these coefficients is not convergent. 

Returning to the more general formulation, we have, with the Smoothness As- 
sumption, that 

(jie(m)2) _ E _ 
I< pi P- ] [W21 t - Pk ]k 

i=l k=1 i+ Pk j=1- k=l Xi j+ Pk 

(2 .1 4a) m _ 2 m X - 2 

< 3IIINmax co, (i) II 11 
+Pk max CO 2( Ht Xj +Pk 

(2.14b) iIe(m)||_ <NM max co (i) L. p i + Cmax 2 (j) x+ 
i k=1 Ai+ Pk i j=1lXij+Pk 

We can now attempt to determine "optimum parameters," pi, *, Pm which min- 
imize the expressions on the right side of (2.14). Clearly, the "optimum param- 
eters" in [2] and [6] are the parameters for the special case that W, and w)2 are taken 
as constants and (cWIW2)2 maxijIad)12. One should keep in mind that here, as in 
many cases, one minimizes an upper bound for l e (m)l 2 and not Ile(m)l 12 itself. 

In order to proceed with the analysis, we assume that the eigenvalues Xj, pi 
are real, positive, and distinct and that the system (2.3) has been normalized* so 
that 

(2.15) max [XN, qM] = 1. 

The eigenvalues are functions of i and j; because of the assumption that they are 
distinct, the inverse functions exist: 

(2.16) j = X-'(Xj), i =-, (i). 

In particular, for the example cited above (see (2.11)), 

(2.17) X-1(s) = [2(N + 1)/ir] arcsin [(sg)l'2] 

where v = sin2 [Nir/2(N + 1)] is the normalization factor. 
Set 

(2.18) a = min [X1, ,l] 

and extend X-1, defined on the discrete set X1 < X2 < < XN, to be a continuous 
strictly monotonic increasing function on the interval ca < s < 1; also, extend w, 
defined on 1, 2, * *, N, to be a continuous positive and bounded function on the 
interval 1 < t < oo. Denote by E2(m) the following, 

[ m 1m 
(2.19) E2m) = max LC2(X'(z)) ZI + j 
Then, by defining Ei(m) with bu in place of X, we have 

* Guilinger [4] used the normalization min [X1, guI] = 1. This does make certain aspects of 
the approximation problem easier to treat, but we use the more usual normalization (2.15). 
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Thus, the question of "optimum parameters" under the Smoothness Assumption 
leads to the approximation problem of determining parameters P1, P2, *, Pm 
which minimize E2(m). We now treat this problem. 

3. Approximation Theory. For simplicity of notation, set 

(3.1) Em (P, z) = co(z) 1Z 
- Pk a=?z?1 

k=1 Z + Pk 

where P stands for the set of parameters 

(3.2) P = {pkIO < Pk < oo, k =1, l ,m}. 

The Chebyshev approximation problem is: Given f(x) continuous on [a, 1], de- 
termine a parameter set P* such that 

max IEm(P*,z) - f(z)I < max IEm(P,z) - f(z)I a_z<l a_z_1 
for all P. The functions Em(P*, z) are, by definition, best approximations to f(z) 
and the deviation dm of Em(P*, z) is, by definition, 

dm = max IEm(P*, z) - f(z) I a<z<l 
A function h(z) is said to alternate k times on a set Z if there is a subset 

{ZilZi E Z, Zl < Z2 < . . . < Zk+1 } such that 

Jh(zj)1 = max Ih(z)I , h(zi) = -h(zi+1), i = 1, *..., k . 
ZEz 

The points in a _ z < 1 where the value IEm(P*, z) -f(z) I is equal to the devia- 
tion are called extremal points. We consider these extremal points zi to be ordered 
by zi < Zi+l. 

The theory of Chebyshev approximation by rational functions is well devel- 
oped [6]-[8] and can be applied directly here to establish the following. 

THEOREM 1. If w(z) is continuous and positive on a _ z _< 1, then, for any P, 
Em(P, z) is locally unisolvent of degree m. 

COROLLARY 1. (A) There is at most one best approximation. (B) A necessary and 
s%ufficient condition that Em(P*, z) is the best approximation to f(z) is that 
Em(P*, z) - f(z) alternate at least m times on a < z ? 1. 

The domain of the parameter P is not closed; hence, we cannot conclude im- 
mediately that every continuous function possesses a best approximation. Never- 
theless, because the function I (z - p)/(z + p) I is a monotonic decreasing function 
of p for z > p and a monotonic increasing function of p.for z < p, we can conclude 
that a best approximation does exist for f 0. 

COROLLARY 2. There exists a best approximation to the function f(z) = 0, 
a ? z _ 1, and all the parameters Pk associated with P* are such that a ? Pk ? 1. 

Together, these two corollaries state that there exists one and only one set of 
parameters, P*, which minimize E2(m) defined in (2.19); moreover, the alternation 
of Em(P*, z) is a property which characterizes these parameters. 
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4. Asymptotic Results. In this section we obtain precise asymptotic results for 
the optimum parameters and deviations as the mesh length tends to zero for the 
special case of one parameter. We also show for the multiple parameter case that 
if the initial error satisfies a certain Smoothness Assumption then the number of 
iterations required to reduce the error to less than a given e > 0 is independent 
of the mesh length h as h tends to zero. 

We now treat a specific case for one parameter which is applicable to the Ex- 
anmple in Section 2. We assume 

(i) m = 1, 

(4.1) (ii) a = [7r/2(N + 1)2 
(iii) A-'(z) = [2(NT + 1)/7r] arcsin ah < Z 

(iv) w(t) = C2 q_-1, C = [Al(a)] I, i.e., (X-'(a)) = 1 

Note that the eigenvalue ratio X1/XN in the Example in Section 2 differs from a by 
0(1/N4) as N tends to infinity (see (2.11)). 

THEOREM 2. Let p* denote the parameter of best approximation. If the assumptions 
(4.1) hold, then 

(i) LimNO. E1 (P*, 1) = 0 . 
(ii) E1 (P*, a) < 1 . 

(iii) z = a is the extremal point z1 and the second extremal point Z2 satisfies 

4p*[z(1 _ z) ]1/2 sin-' (zl/2) + q(z2 _ p*2) 0 

(iv) a< p* < Z2 = -p*(2 + [q + 4] )/q + Q(P*)2 

(v) LimN0. p* = 0. 
(vi) p* satisfies 

a- p* + K[p*/la]q/2[a + p*] + O(a2) = 0, 
where 

K =Z2l q/2 > 0 
Z2 +l 

(vii) If q = -1, then p* = 1.6a + 0(a 2) and the deviation, d1(q), is d2(-1) = 

.23 + 0(a). 
(viii) If q = -2, then p* = 1.3a + 0(a 2) and the deviation, d2(q), is d2(-2) = 

.13 + O(a). 
(ix) Lim,_,, a/p* = 1, Lim,,-. di(q) = 0. 

Proof. (i) Since 

x * 

El(P*, x) = Wc(x)) -p* 

and (x - p*)/(x + p*) < 1, w(X-1(1)) = C[2(N + 1)/7r]q, it follows that 

El (P*,) ) (N +1)q 
and, since q ? -1, the result is established. 

(ii) We have co(X-' (a)) = 1 and the choice of p = 1/2 leads to E JE1(1/2, x) I < 1 
for a < x < 1. 

(iii) We note that El(p*, x) has only one zero, p*, and only one extremum be- 
tween a and infinity. We find the coordinate Z2 of this extremum by differentiation. 
A manipulation leads to 
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1/2 1/2 2 P2 
4p*(Z2 (1 

- 
Z2)) arcsin (z2 ) + q(z2 - p*2) =Z0 

(iv), (v), and (vi) We consider the equation 

(4.2) Ei(p*, a) = -Ei(p*, Z2) 

There is only one choice of p* and Z2 which satisfies (4.2) and (iii). We show there 
is a choice of p* and Z2 which satisfies these and for which p*/a, Z2/a are bounded 
for large N. These values then must be the desired quantities. 

With Z2/a bounded we can replace arcsin(zI'2) with (Z2)"12 + 0(a2) and 
(1 - Z2)1 /2 with 1 + 0(a) in (iii). Then, with terms 0(a) omitted, the solution of 
the resulting quadratic equation is 

Z2 = 2p {1 [1-q(4p/3-q)]1/2 } 
4*3- q 

Recall q ? -1 so that we need to take the plus sign on the square root. Since p* 
is small, this relation is the one in (iv). 

We substitute this value into (4.2) and, after considerable manipulation, 
obtain 

(4.3) 1 - p*/a + K(p*/a)q I2 + K(p*/a)q 2+l = 0 

where 

K = (Z2 - 1)(Z2)qI2/(l + Z2) + O(a) 

It is clear that (4.3) cani only be satisfied if p*/a is bounded arid hence if (v) holds. 
We see that (4.3) has a root by evaluating the left side for p* = a (where it is 
positive) and for p*/a large (with p* still small compared to q). Thus, for N suffi- 
ciently large, there is a choice of p* and Z2 which satisfies (4.2) and (iii), and p*/a, 
Z2/a are bounded. 

The final three points are verified by direct calculation from the preceding 
relationships. 

It is interesting to note that one can obtain arbitrarily high accuracy with one 
iteration of ADI, but one needs a "sufficiently smooth" initial error, i.e. -q suffi- 
ciently large and w(a) = 1. This reflects the fact that it is nontrivial to construct 
initial estimates of u so that e(?) is "sufficiently smooth." 

We now treat the problem of achieving a given accuracy with a fixed number 
of iterations, independent of the number of mesh points. The following assumptions 
are sufficient to establish such a result. These assumptions are satisfied by many 
separable partial difference equation problems which approximate separable par- 
tial differential equation problems of mathematical physics, such as the Example 
of Section 2. 

(4.4) i. The matrices A and B in (2.3) are positive definite; A is N X N and B 
is M X M, and each has a set of distinct eigenvalues: X1(N) < X2(N) < 

* < XN(N) and 81(M) < 82(M) < . . . < yM(M), respectively. 

(4.4) ii. For any fixed index i, the ratio X f(N)/Xl(AN) is uniformly bounded for all 
meshes considered, i.e. for all N. 
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(4.4) iii. There is a continuous function A-' (t), 1 < t < oo, and a positive con- 
stant o- ? 1 such that xi ? A-l(X,(N)/Xi(N)) ? i for all N. 

(4.4) iv. The sets of positive parameters used, p1(N), p2(N), * * *, are such that there 
are positive integers s, J independent of N and 1 < J (N sufficiently 
large) such that for each r = 0, 1, *, there is a positive integer p < s 
such that X1(N) < p(N) < X (N). 

(4.4) v. For each mesh considered, the coefficients a(?) (which depend on M and 
N) of the initial error satisfy the Smoothness Assumption (2.10) for fixed 
functions col(i), Cw2(i), i = 1, 2, *, which satisfy the following: 

Given e > 0, there is a positive integer Ko and constant y such that 

X0 00 

Cl(i< Y < C0, E C02(j) <E. 

j= Ko 

THEOREM 3. With the assumptions (4.4), given e > 0, there is a positive integer 
L such that lIe (L) 112 < e uniformly for all meshes considered. 

Proof. (We suppress the superscripts (N) on Xj and Pk.) We have the following 
bound on IIe(')112 from (2.14a) and (4.2v) if Pk > 0 

N _ I _2 

(Jfe( tf)2 < E X2 

- 
P 

(Il(')12 
j=j 

2 j 
k=l Xi + Pk- 

From (4.4v) it follows that there is a Ko such that 

00 

E0 @2 (j) < 62/2,y. 
j=Ko 

Set K = max { [Kola] + 1, J } (for a- see (4.4iii) and for J see (4.4iv)); then 

K I _ _2 2 
(ffe(')Jf2)2 < z 2(j)II IAPkI+e 

j=1 k=1 Xj + Pk J2 

For Psr+p such that X1 < Psr+p < XK, 

max J- Psr+p < max(Xl-Psr+p XK-Psr+p) < 
1l5j<K Xj + Psr+p Xl + Psr+p X K + Psr+p 

where 
X = (XK - X1)/(XK + X1), 

and X is positive and, by (4.4ii), it is less than unity, independent of N. Therefore, 

Xi - Pk) [I/] 

and for some value L of 1 we have 

7IL/I] < e2/[2Z 2, 2 
(j)] 

which implies that I e('-L) 112 < e and concludes the proof. 
The estimates made in the proof are extremely crude, and a smaller value of 
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L can be obtained with a judicious choice of the parameters pk. However, we have 
not been able to analyze the multiple-parameter problem sufficiently well to ob- 
tain results similar to Theorem 2. The experimental results reported in Section 7 
indicate that analogous results are true. 

We also obtain a similar result for the uniform norm of the error. 
THEOREM 4. With the assumptions (4.4), but replace the inequalities in (4.4v) 

with 

00 00 

(4.5) CO c1(i) < Y < oo, E (92 (i) < C, 
i=l ~~~~~i= Ko 

given e > 0, there is a positive integer L such that e Ce(L) l < e uniformly for all meshes 
considered. 

The proof is similar to that for Theorem 3 and we omit it. 
Remark. Neither the unit error function el nor the pyramid function e2 in (2.12) 

satisfies (4.5). But, for e2, 0) = 6Si/i2 and the proof of Theorem 4 can be easily 
modified to treat this special case; the result is the same and II e(L)i00 < e for the 
example of Section 2 provided parameters which satisfy (4.4iv) are used. 

The Wachspress parameters pi(w), i = 1, * * *, m, are given by 

(4.6) Pm-k+l= Xva k 1 m 

Since pi = a, the Wachspress parameters satisfy assumption (4.4iv) with s = m 
(W W) ( W) (W) when cycles of them are used: pC(w), PM pC), pi , * rn PM Pi 

Because of this, and by the preceding remark, we have the following. 
COROLLARY. Suppose cycles of Wachspress parameters are used to reduce an in- 

itial error es, i = 1, 2, or 3 of (2.12) in the example of Section 2. Then, given e > 0 
there are integers Li, i = 1, 2, 3, such that IIei(Li) 12 < E, = 1, 2, 3, independent 
of N, and there are integers M2, M3 such that fe i(M i) If < E, i = 2, 3, independent 
of N. 

5. Nature of Parameters and Deviations. For a given smoothness assumption, 
optimum parameters can be computed efficiently with the Remes algorithm [9] 
by a modification of a procedure of de Boor and Rice [3]. The computation is made 
easier by a change of independent variable:* 

(5.1) z=1V2 a< z<1. 

But, even when v is used instead of z, caution must be used to obtain fairly ac- 
curate initial estimates of the optimum parameters so that the iteration converges. 
Table 1 contains parameters for weight functions co(i) equal to 1, 1/i, 1/i2, and 
1/i3 for a single value of a and for several values of m. 

The results of Theorems 2, 3, and 4 can be explained heuristically as follows 
for the smoothness condition co(i) = i~- with q > 1 and for initial values of u at 
mesh points chosen to be values of given function f defined on R. The initial error 
is expressed as 

* The change of variables can also be written as y = a-2 y = n, 1 ? y < i/. In effect, 
Guilinger [41 uses the variable y. 
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N 

e(?)= ,a()qi pj 
i,j=1 

and as N tends to infinity a) tends to the Fourier coefficients of the initial error 
u-f. Because of the Smoothness Assumption, for large N the major contribution 
to the error occurs in the modes for which both i/N and j/N are small. In the 
case of the example in Section 2, for fixed i, Xi - Xi1 (see (2.11)) tends to zero 
as N tends to infinity, i.e., the eigenvalues coalesce. For large N, a single parameter 
pi suitably chosen close to Xi makes the factor (Xi - pi)/(Xi + pi) very small for 
all those i which contribute most to the error. Thus, the use of pi causes a large 
decrease in the amplitudes of those Fourier components; the other error com- 
ponents are already small because of the Smoothness Assumption. 

TABLE 1 

Optimum Parameters, a = .00154 37125* 

m @(i)-1** co(i) = 1/i 0x(i) = 1/i2 @() = 1/is 

(Deviations in parentheses) 
1 .15691 8 .00996 970 .00803 294 .00738 883 

(.92) (.24) (.13) (.090) 

2 .02242 57 .00802 725 .00709 381 .00678 300 
1.09800 .04644 93 .02123 81 .01500 02 
(.56) (.10) (.039) (.020) 

4 .00938 813 .00707 865 .00663 058 .00647 621 
.05890 57 .01777 43 .01139 43 .00948 425 
.41801 3 .07253 30 .02956 80 .01954 20 

2.62282 .49016 8 .11947 5 .05948 92 
(.16) (.028) (.0064) (.0022) 

6 .00753 579 .00673 313 .00647 416 .00637 289 
.02242 57 .01238 41 .00933 635 .00823 053 
.08161 90 .03156 24 .01764 89 .01320 49 
.30168 6 .09620 75 .04036 27 .02527 28 

1.09800 .35457 7 .11239 7 .05796 41 
3.26752 1.73149 .44512 2 .18037 2 
(.046) (.0084) (.0015) (.00040) 

8 .00692 432 .00654 842 .00639 328 .00632 062 
.01416 34 .01007 07 .00841 113 .00766 372 
.03620 90 .01997 74 .01362 89 .01094 59 
.09609 81 .04486 95 .02534 29 .01774 41 
.25623 1 .10959 2 .05229 88 .03188 12 
.68003 3 .29209 8 .12053 0 .06363 19 

1.73852 .86612 3 .32516 3 .14683 2 
3.55607 2.73555 1.16852 .44809 5 
(.013) (.0024) (.00044) (.00009 1) 

* For the five-point approximation to the Laplacian on a unit square this value of a corre- 
sponids to N + 1 = 1/h = 40. 

** For m = 1, 2, and 4, these values differ from those listed in [21; we believe our values to 
be correct to the number of digits listed. 
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Graphs of Em(P*, z) versus z indicate the same behavior for m > 1. For ex- 
ample, Fig. 1 shows the error function E2(P*, z) for co(i) = 1/i2, for two values of 
a, plotted as a function of v (see (5.1)); thus the z-axis has been stretched near 
z = a to show the oscillations there. Observe that in contrast to the case co(i) = 1, 
even for a = .1 (N = 5 in the Example of Section 2), the point z = 1 is not an 
extremal point. The rightmost extremal point, Z3, is in the interior of [a, 1]. Note 
that for z > Z3 the error function E2(P*, z) decreases because of the Smoothness 
Assumption. Note also that in Fig. 1 the vertical scales of the two graphs are the 
same; the deviation decreases only slightly as a decreases. Graphs of Em(P*, z) for 
m > 2 are similar, but instead of having two zeros as in Fig. 1, they have m zeros. 

E2/0.039 E2/0.039 
I. I 

.5- .5 

V V 
O 0 

.2 .4 .6 .8 1. .4 .6 .8 I 

-.5 ~~~~~~~~~-.5 cc = 0. I ot 0.00001 

-I. -1.T 

W=i I/i2- 

One of the most significant features of the functions Em(P*, z), as functions of 
v, is the regular oscillation from the first extremal point zi = a to the last, zm. 
Indeed, the extremal points are almost exactly linearly distributed along the v- 
axis. We do not elaborate on this distribution, but only point out that ym = zm/Ia 
is a well-behaved function of m. Table 2 gives values of ym for several values of m 
and a for co(i) = l/i2. 

TABLE 2 

Ratio of ym = zm//a of Rightmost Extreme Point to a for C(i) = l/i2 

a m= 1 2 3 4 5 6 9 

1 1.0 1.0 1.0 1. 1. 1. 1. 
.01 3.0 9.6 23.5 45. 68. 88. 97. 
.001 3.2 10.3 26. 59. 115. 218. 700. 
0-,o 3.2 10.3 26. 59. 123. 

The dependence on m, a, and the Smoothness Assumption of the deviation is 
summarized by the graphs in Figs. 2A and 2B. In Fig. 2A, the average deviation 
per ADI sweep, rm = [dm1' Im, is plotted versus m for several values of a for 
co(i) = I/i. The principal facts illustrated by this graph are: (1) The asymptotic 
value, as a I 0, of 7'm is reached quickly. (2) There is a diminishing return in in- 
creasing the number of parameters; that is to say, the reduction in the error per 
iteration decreases with the number of parameters. Similar graphs with Smoothness 
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Assumption co(i) = iq for different values of q < 0 show that, apparently, the 
asymptotic limit as ax l 0 is reached faster as (-q) increases. 

In Fig. 2B the deviation is plotted versus N + 1 = 1/h (the relationshhip to 
ac is given in (2.12) for the Example in Section 2) for several values of q for m = 4. 
This shows that for q = -1, -2, and -3, the deviation is bounded below unity 
independent of N. For comparison, the deviation for four Wachspress parameters 
is also plotted. 

rm 
.6 

A 10-5I 

10-3 

.4 Io - 

10-I 
.2 

_c(j) _ /i 

0 
o 2 4 6 

id4 

Wachspress 

io-I I 

-2 - / / 

/-I/ j2 

z - - ^ 1i3 

10-3 - / 

IoI- 20 410 80 1I/h 
= 

N + I 
0 5 10 20 40 80 ~~160 
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6. Limitations in Use of Parameters. We stress four limitations in using param- 
eters based on some smoothness assumption. 

First, as is well known, there is not a simple relationship between the devia- 
tions in the approximation problem and the amount that the error will be reduced 
in an actual calculation. This is because the deviations together with other quanti- 
ties enter into an upper bound which was derived by some rather crude estimates. 
Thus, while the (smooth) "optimum parameters" are definitely superior to param- 
eters which assume co(i) = 1, we cannot conclude that they are the only efficient 
set of parameters for smooth initial errors. 

Second, application of m sweeps of ADI with optimum parameters pi, p2, *, Pm 
changes the distribution of the error components.* If initially Ia(.)| < cwl(i)cW2(j) 

where cwi(l) = cW2(1) = 1, then after m sweeps, one has Iad7f)l _ dm(1)dm(2). Be- 
cause the (smooth) optimum parameters are concentrated near a, one still expects 
that IaT)l < Kcoi(i)co2(j), but the coefficient K will, in general, not be dm(1)dm(2). 
Furthermore, for small i/N, j/N the error components are more nearly equally 
important than for the initial error. Consequently, two successive applications of 
optimum parameters: p1, P2, *, Pm, P1, P2, * I Pm are unlikely to reduce the error 
twice as much as one application, so that one does not necessarily have je (2m) j 
(dm(1)dm(2))2. 

Let Gm, j denote the error function after j cycles of m parameters; then 
m 

Gm,j(P, x) = Em(P, x) TI [(x - p )/(x + p )]il 

and the deviation dm, j after j cycles of optimum parameters is 

dm,j = max |Gm,j(P*, x)] 
x 

For example, with a = 0.00001 and m = 2, G2,1 = E2 is shown in Fig. 1 and d2,1 
is taken on by G2,1 at three values of x (or v). Graphs of G2,j, j = 2 and 5 are 
shown in Fig. 3, and d2,j is taken on at only one value of x; note that in Fig. 3 
the scales on the two y-axes are different. Values of d2,j and the points xj for which 
d2,= i G2, (P*, xi)I are listed in Table 3. 

TABLE 3 

Deviations d2,j and Extremnal Points Xk after j Cycles of Two Optimum 
Parameters with C(i) = 1/i2 and a = 0.00001 

j d2, Xk 

1 .0396 .0000100, .0000175, .000103 
2 .0198 .000200 
3 .0133 .000287 
4 .00997 .000370 
5 .00797 .000481 

Since the distribution of the error components is not known after the first m 
sweeps, then if the error is not sufficiently small after m sweeps it seems to be 

* This observation was made by Dr. Bernard Kripke in the spring of 1964. 
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advisable to follow a cycle of m (smooth) optimum parameters by a cycle of pa- 
rameters obtained on the assumption that all error components are equally im- 
portant. We have used, and recommend for use, the Wachspress parameters 
(see (4.6)). 

Third, for a given problem, instead of using the optimum parameter P* which 
solves the approximation problem of Section 3, one would like to use the discrete 
optimum parameter set, Q* = {( i I,m, which minimizes Fm(Q) defined by 

(6. la) Fm(Q) = max |Fm(Q, zi)J , 
z iElA 

(6. lb) Fm (Q, z ) = wC ('- (z )) )jZI 
- Ck 

k=1 Zi + C/k 

where A denotes the set of eigenvalues of the matrix A (or B). To illustrate the 
difference between P* and Q* again consider the example of Section 2 and take 
N = 39 (39 X 39 interior mesh points, h = 1/40). Table 4 contains values of o-i 
for several m; compare these with values in Table 1. Also, compare the parameters 
with the eigenvalues listed in Table 5. For small m, pi and a are nearly equal, but 
as m increases, this is not so. Specifically, for m = 8, c(i) = i-3, there are four 
values of pi between X1 and X2, and the deviation of the optimum parameter error 
curve is 16 times larger than that of the discrete optimum parameter curve. Fig. 4 
shows the error curves E8(P*, z) and Fs(Q*, z) plotted as functions of v (see (4.1)). 
Finally, note that for m = N, the discrete optimum parameters are given by 
ci = tX so that m sweeps with these parameters annihilates the error [5]. 

G2,2/0.02 G2,5/0.008 

.5 . 

1 1 \I I vo1 ,.l,V, 

0 .2 .4 .6 .8 1. 0 .2 .4 .6 .8 I. 
TWO CYCLES FIVE CYCLES 

a = 0.00001 t t(i) - I/ i 

E8/0.000091 F8 /0.0000057 

.5 . 

'50 A0 Do 

-50i'217 lI6l.81 1'.- ,51 .2 .4 .6 .8 1. 

-.5 -.5 

OPTIMUM PARAMETERS DISCRETE OPTIMUM PARAMETERS 

i (i ) = I / i3 I 1 /h = 4() 
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TABLE 4 
Discrete Optimum Parameters for the 5-Point Approximation to the Laplacian 

on a Square with N + 1 = 1/h = 40 (a = .00154 37125) 

m c(i) = 1 w(i) = 1/i w(i) = 1/i2 W(i) = 1/i3 

(Deviations in parentheses) 
1 .15691 8 .00989 250 .00797 088 .00708 149 

(.92) (.23) (.13) (.069) 

2 .02242 03 .00783 639 .00663 236 .00632 127 
1.09826 .05296 70 .03530 12 .03087 79 
(.56) (.094) (.026) (.0083) 

4 .00936 885 .00661 830 .00623 107 .00617 708 
.05928 24 .03145 10 .02688 07 .02551 20 
.41968 2 .11205 0 .07194 46 .06487 66 

2.62539 .72808 2 .27648 6 .17133 1 
(.16) (.021) (.0027) (.00045) 

6 .00703 647 .00627 923 .00617 786 .00616 671 
.03239 73 .02694 39 .02523 42 .02477 74 
.10037 0 .06917 40 .06129 54 .05781 12 
.35699 2 .18452 5 .12638 9 .11294 4 

1.20984 .60862 3 .33018 3 .22988 9 
3.32967 2.33703 1.16917 .66998 5 
(.038) (.0044) (.00044) (.00004 5) 

8 .00637 169 .00618 796 .00616 753 .00616 552 
.02710 33 .02525 64 .02476 50 .02465 05 
.06766 94 .06035 81 .05721 27 .05590 44 
.15012 8 .11847 0 .10890 3 .10315 5 
.36153 5 .25281 8 .19338 7 .17406 5 
.86523 7 .57420 8 .40350 4 .31064 7 

1.98346 1.41132 .94676 9 .66710 5 
3.63452 3.2394 2.5054 7 1.73554 
(.0075) (.00075) (.00006 9) (.00000 57) 

TABLE 5 

Eigenvalues of the A Matrix for the 5-Point Approximation to the Laplacian 
on a Square with N + 1 = 1/h = 40 

.00616 533 .70110 4 2.15692 3.52081 

.02462 33 .82442 9 2.31287 3.61803 

.05526 02 .95500 3 2.46689 3.70528 

.09788 70 1.09202 2.61803 3.78201 

.15224 1 1.23463 2.76537 3.84776 

.21798 7 1.38197 2.90798 3.90211 

.29472 0 1.53311 3.04500 3.94474 

.38196 6 1.68713 3.17557 3.97538 

.47918 8 1.84308 3.29890 3.99383 

.58578 6 2.00000 3.41421 
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Fourth, since the largest contribution to the error normally occurs in the low- 
frequency Fourier components, one would expect to get even greater error reduc- 
tion by always choosing a as one of the values of pi, that is, make X a root of the 
error curve instead of an extremal point. 

7. Experimental Studies on the Square. The Peaceman-Rachford ADI scheme, 
(2.4), was used to solve the difference equations formed by the five-point equal- 
spaced difference approximation to Laplace's equation. For this, the A (=B) 
matrix is tridiagonal with elements aii = 2/h2, aij - 1/h, ji - = 1, 
i = 1, ***, N, h = 1/(N + 1). As in the Birkhoff, Varga, Young experiments 
[2], boundary conditions 

(7.1) u(x, y) = O, for x=O,, ?0 y < 1, and O< x < 1, y = O, 1 

were used so that the components of u(m) were the errors e(m). We report on ex- 
periments in which the maximum error of the n iteration, Ile(n)l1"" = maxijleijl, 
was determined for different parameter sets for the initial errors (2.12): 

(7.2) ui(x, y) = ei(x, y) , i = 1, 2, 3. 

The Fourier expansions of these initial functions are given by (2.13). 
Figs. 5A and 5B show plots of IIe(n) 1,, versus n for the three initial errors of 

(2.12) for both optimum parameters and discrete optimum parameters for 
co(i) = 1,1 /i, 1/i2, and 1/i3, and for m = 8. 

Fig. 6 shows the effect of the ordering of the parameters.* In one case an in- 
creasing order was used: P1 < P2 < * < Pm, and in the second case the reverse 
order was used. 

I le,(n) 11 I le2 (n) IIj Ile,(n) 11 ooQ 
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lo-5r I 2 
10-6 UNIT PYRAMID -SMOOTH \ I/i3 

INITIAL INITIAL INITIAL \ , 

lo-, -ERROR ERROR ERROR 

10-8 I________________ _ I I I I I I I II I 0 
| I ,,,, I I I I n 

0 4 8 0 4 8 0 4 8 
ERROR REDUCTION WITH 8 OPTIMUM PARAMETERS 

* With the exception of the experiments to obtain the data for Fig. 6, the parameters were 
always used in increasing order: pi < P2 < ... < Pm, in each cycle. 
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Iel(n) 11 X Ile2()1 I sII Ile3 (n)l II 
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Fig. 7 shows the effect of applying: 
i. Successive cycles of optimum parameters with co(i) = 1/2: "OPT." 
ii. One cycle of optimum parameters followed by success cycles of Wachspress 

parameters (4.4): "OPT.-WACH." 
iii. Successive cycles of discrete optimum parameters: DIS. OPT. 
iv. Successive cycles of Wachspress parameters: WACH. 

Ile(n) 1100 PYRAMID 
I. INITIAL 

ERROR 
10-1 e2 

lo-, t PPT . 

iO0-4 

lo-, WACH.-\V - 

lo6 >\DIS. OPT 

10-7 01 - 4PT.- WAGCH. 

-O8 f- 
0 8 16 24 32 

In each case the initial error was the pyramid function e2 = U2 (2.12) and m = 4. 
Figs. 8A through 8L show the effect of the mesh size on the number of itera- 

tion Ke to reduce the error below a prescribed value e. Graphs of I e (n) versus 
N + 1 = 1/h for several values of n are shown for various initial errors and 
optimum parameter sets; in each case m = 4, and the parameters were cycled; 
also, the results for Wachspress parameters are shown. 

Eigenvalue uncertainty. In many practical problems the value of a X 1/X,N is 
uncertain, and it must be estimated to obtain any of the various sets of param- 
eters. Experiments were made to determine the effect of this uncertainty on the 
error reduction. 

The problem described above was solved with the Wachspress parameters (6.4) 
on two meshes, N = 39 and N = 159, with uniform initial error el. The parameters 
were computed with zi in place of a = X1/XN such that a/a took on the values 
1/10, 1/2, 9/10, 11/10, 2, and 10. The results for N = 39 are illustrated in Fig. 9, 
which shows plots of the number KE of iterations required to reduce the error to 
e = 10-6 versus the number m of parameters. The number of iterations exceeded 
50 for a/a = 10, thus these results are not included in Fig. 9. 
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8. Conclusions. A simple explanation of Guilinger's result [41 follows from the 
relation between the error function Ei(P*, z) and the distribution of the Fourier 
components of the error; graphs of E1(P*, z) for different a are similar to those 
in Fig. 1 but with only one zero. With Guilinger's normalization of X1 = 1, 
X=v I/a, the values of the first few eigenvalues X1, *-*, Xk are fixed as N oo 
(h 4 0). With smoothness assumptions such as co(i) = ij, q < -1, the Fourier 
coefficients associated with these eigenvalues contribute most to the initial error, 
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and their values are, essentially, independent of N. Consequently, with a single 
parameter pi, independent of N, most (i.e. as much as one pleases) of the initial 
error can be eliminated. With the normalization X1 = a, XN = 1 the value of pi 

does depend on N, and it tends to a as N T mo. Fig. 1, corresponding figures for 
m > 2, and the explanation for m = 1, indicate that the same type of result holds 
for the multiple-parameter case. For this case, with the usual normalization Xi = a, 
XN 1, one expects Pila, i =1,***, m to be independent of N for sufficiently 
large N. 
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It is clear from the experimental results (see Figs. 5A and 5B) that the smooth- 
ness assumption does influence the actual error reduction. When discrete optimum 
parameters are used then, at the mth iteration, the smallest error occurs with the 
smootlhness condition which most closely approximates the behavior of the Fourier 
components of the initial error. However, for (smooth) optimum parameters, this 
is not necessarily the case. For example, with m = 8 and initial error e3 Fig. 5A 
shows that the smoothness assumption co(i) = 1/i2 yields smaller error than 
co(i) = 1/i3; this occurs because of the appreciable difference between the values 
of the (smooth) optimum parameters pi and the discrete optimum parameters o-i 
(see Tables 1 and 3 and Section 6). 

Fig. 6 confirms that the effect of the smaller parameters is greater than the 
effect of the larger ones. The increasing order yields initially faster error reduction 
because the majority of the error is contained in the low-frequency Fourier com- 
ponents. Because of this, an increasing sequence of parameter is recommended 
since with it one is more likely to achieve a prescribed error reduction with fewer 
iterations. 
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It is clear from Fig. 7 that successive cycles of optimum parameters are much 
less effective than the first cycle. This is accounted for by the change in distribu- 
tion of error components (see Section 6 and Fig. 3). Consequently, if m has been 
selected and if at the mth iteration the error is not sufficiently small, the computa- 
tion should be continued with a different set of parameters. The effectiveness of 
the Wachspress parameters is probably due to the fact that the parameter p1(w) = a, 
annihilates the largest error component. 

Observe that our experimental results (see Fig. 7), as well as those of Birkhoff, 
Varga, and Young [2], indicate that the Wachspress parameters are just about as 
effective as the (smooth) optimum parameter to reduce the error by a prescribed 
factor. This can be explained by noting (again) that p1(w) = a. In both our ex- 
periments and those reported in [2], the Fourier coefficient of the initial error as- 
sociated with Xi was larger than any other. This also shows that it is to be expected 
that Wachspress parameters give larger error reduction than the Peaceman-Rach- 
ford parameters Pi(P) which have pi(P) > a and an error curve with extremal point 
at z = a, just as do the optimum parameters pi. This is confirmed by the data in 
[2]. Now, this suggests that the Wachspress parameters should be used in preference 
to the (smooth) optimum parameters. This is particularly true if there is some un- 
certainty in the nature of the behavior of the Fourier coefficients or the value of a. 

Figs. 8A through 8L confirm the conclusions of Theorem 4 and the Corollary 
of Section 4 that for sufficiently small h, the number of iterations K, necessary to 
reduce the error Ile I10 below a prescribed value e is independent of h when either 
the pyramid error e2 or the smooth error e3 was used as initial error. Moreover, the 
Figs. 8A, 8D, 8G, and 8J indicate that this result is false when the uniform initial 
error ei is used which agrees with results in Birkhoff, Varga, and Young [2]. 

It seems to us, therefore, that except for those problems in which considerable 
information about the eigenvalues is known, such as the problem in the example 
of Section 2, there are four reasons for using the Wachspress parameters instead of 
the (smooth) optimum parameters. First, the error reductions are about the same. 
Second, they are easier to compute than the optimum parameters. Third, the exact 
value of a is, in general, not known and one cannot compute the exact optimum 
parameters even if the appropriate smoothness condition of the initial error were 
known. Fourth, the number of iterations required to reduce the error to a pre- 
scribed value is independent of N provided that smooth initial conditions are used. 

Our experiments on the effect of the uncertainty in a indicate that one gets 
much better error reduction by underestimating a than overestimating it. This is 
readily explained by examining a typical error curve. For z > a (and hence 
Xi > aXN) the value of the error function is no larger than its deviation. However, 
for z < a, the error function increases very quickly. Thus if a is overestimated, the 
error associated with Xi is reduced very slowly. 
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