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1. Introduction. A self-adjoint parabolic equation in one space variable is con- 
sidered, under boundary conditions which involve the function and its space de- 
rivative. A type of numerical instability can arise, which is traceable to the bound- 
ary conditions, and which is caused by the existence of unbounded solutions of 
the original differential equation. 

2. The Differential Equation. The equation to be examined is 

au a (a) du 
(1) a~~~~~~t clx o 

in the region 
R [a ? x ? b] X [t > 01 

subject to the initial condition 

(la) u(x, 0)y(x), a < x < b, 

and the boundary conditions 

(lb) au/ax-pu =0(t), x = a t > 
au/ax + qu =1(t), x = b, 

where p, q are constants, 4o(t) and 41(t) are bounded as t -* o, and there are no 
discontinuities in the initial or boundary conditions, or at the corners of R. In 
addition, we assume g(x) > 0, for a < x < b. 

Several authors (e.g. [1]-[5]) have considered the equation (1) subject to (la) 
and (lb) for the particular case when p > 0 and q 2 0. These conditions are not 
imposed in this paper. In [6] Keast and Mitchell have considered the problem of 
the present paper with g(x)-1. 

3. The Difference Approximations. The region R is covered by a rectangular 
mesh, the nodal points of which are given by 

xi=a+ih; i=0,1, ..,N; Nh=b-a 
and 

t,1=nk, n _ 0. 

The constants h and k are the space and time increments respectively, and the 
ratio k/h2 is denoted by r. 
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We consider an approximation to Eq. (1) which can be written in the form 

(2) w n+l n = n) +r A (BiVW 
n+ i = On,1 *-, N n> 0 

where wim(m = n, n + 1) is the numerical approximation to t(xi, tn2); the differ- 
ence operators A and V are defined by 

(3) Af fi+1= - f and Vfi = fi-fi_ 

and the coefficients B. (i = O, 1, * *, N + 1) are defined, using a method de- 
veloped by Tikhonov and Samarskii [7], by 

(4)=[f d ]- i = O, 1, *. *, (N+ 1). 

In Eq. (2), when n - 0, the values of w? (i = 0, 1, * * N) are obtained 
from the initial conditions (la). When i = 0 or N, the values of w outside R, viz. 
wm1 and w7+y, (m = n n + 1), which occur in (2) are eliminated using the bound- 
ary conditions (lb), in which the derivatives are approximated by the equation 

(5) autm/ax = (wm +i-w'7.1)/2hX j=O,N and m=n,n+1. 
If we denote the vector of values of w at each time level tm by wm, i.e. 

wM = {WOn, Wlm, *, WNn} T 

and use the boundary conditions (lb) in (2) when i - 0 and i = N, we may write 
the totality of difference equations in the form 

(6) (I + rU/2)wn+l = (I - rU/2)wn +1' 

where In is a vector involving the boundary conditions (with lln = 12 = 

= IN-1 = O, for all n) and I and U are matrices of order (N + 1). The matrix 
I is the identity matrix, and U is given by 

[B1 + Bo(l + 2p/N) -(B1 + BO) 

-BI B1 + B2 - B2 

(7) U [ 

-BN_1 (BN_1 + BN) -BN 
- -(BN + BN+j) BN + BN+1 (1 + 2q/N)J 

Let the numerical error of the difference method (6) be denoted by 

n = Wn -wn Vn>O 

where wn is the exact solution of Eq. (6) and w* is the numerical solution. Then 
we obtain the error equation 

(I + r U/2) En+1 = (I - r U/2) En 

We shall assume (I + rU/2) to be nonsingular, so that 
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(8) ?n+1 = (I + rU/2)fl(I - rU/2) n. 

The difference method (6) will be stable, therefore, if and only if the norms 
I jI of the vectors given by (8) are bounded. Since 

En+l = Gn+I?O 

where 

G = (I + rU/2)-1(I - rU/2) 

then the norms f nj I are bounded if and only if there is a constant K such that 

11Gn+li I< K, Vn > O. 

The matrix U is not symmetric, but it is' similar to a symmetric matrix U, 
where 

(9) U=D-1UD 

with D given by 

((B1 + Bo)/B)1/2 1 

D= 

L 1 ((BN + BN+1)/BN) 1/2 

Hence the eigenvalues of U are all real. 
Thus G is similar to a symmetric matrix G, where 

= D-1GD 

and if p(G) is the spectral radius of G (the maximum modulus eigenvalue) then 

I I1n+1 II 
= pn+1(G) 

Clearly [Gn+1 is bounded if and only if IGn+lI is bounded. The stability condi- 
tion is therefore: there exists K > 0, for all n > 0, pn+l(G) < K. 

This condition clearly implies 

(10) p(G) ? 1. 

It should be noted that condition (10) is the condition for asymptotic stability 
(n -> o) of Eq. (6). If the errors are to be bounded in a closed region 0 < t < T, 
for some finite T, then (10) may be weakened to the condition 

p(G) ? 1 + O(k) . 

This point has been discussed by Gary [8]. In this paper we take (10) as our con- 
dition for stability. 

If we denote the (N + 1) real eigenvalues of the matrix U by Xo, XN, * , XA, 
then condition (10) is satisfied if and only if 

I ( _ - rX/2.)/(l + rX./21 < 1 1 i=0,1, ---,N. 
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We shall assume that 1 + rXi/2 > 0 (an assumption which is justified later) and 
hence the necessary and sufficient condition for stability becomes 

Xi > O, i = 0,21,2* ** ,N. 

4. The Eigenvalues of U. If we apply the theorem of Gerschgorin to the matrix 
U in (7), we find that the spectrum of U lies within the union of the intervals 

O < X < 2(Bi + Bi+,) I i = 1, 2, .. I (N -1), 

(2Bo/N)p < X < 2[Bo(l + p/N) + B1], 

(2BN/N)q < X < 2[BN+1(1 + q/N) + BN]. 

If p > 0 and q > 0 then U is positive definite (or positive semidefinite if 
p = q = 0), and Eq. (6) is then stable. This is the case which has been considered 
by the authors [1]-[5]. If any eigenvalues of U are negative, then they are 0(1/N), 
and so for large N we may assume that 1 + rXi > 0, i = 0,1, .. , N. This justi- 
fies the assumption made in Section 3. 

We now consider for what values of p and q the matrix U is singular, i.e. 
det (U) = 0. Expanding this determinantal equation we obtain 

(4pq/N2)BoBN+iT'h1 + (2p/N)Bo(BN + BN+1) (T(1l )-BNT+L) 
(11) + 2 (q/N)BN+l (Bo + B1) (T(h1 - B1T (2I2) 

+ (Bo + B1) (BN + BN+1) (T() 1 - BNT(1) 2- B1T(2) 2+ B1BNT (2) 3)= 0 
where 

(Bs + B,s+) -Bs+ 
- Bs+, 

Tr(s) = det 

-Bs+r-l 
-Bs+r_l (Bs+r-1 + Bs+r) _ 

is the determinant of an (r X r) symmetric matrix. The constant term (i.e. the 
term independent of p and q) in (11) is the expansion of det U when p = q = 0. 
But if p = q = 0, U is singular (the sum along each row is zero), and so this con- 
stant is zero. 

It is easily shown that 
r r+s 

T =(s E { Bi} 
j_8o i=s; i$jj+s 

and hence that 

N-i 

-V) 1-BNT(1) 2 - Bi 

and 
N 

Tm1) -B1Tm(2) l B. 1N-1- l N-2- D 

i==2 
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Equation (11) then becomes 

4Pq BN+ +N ft B + 2P (BN+ BN+1) lB1 

(12) N2 i=? j=i i*j+l N BNBN+1 i=O 

2q Bo + BH BiO 

This may be rearranged to give 

(12)t ~ 4p N2 1 + Np BN B N+1 +2q BO + B, (12)' 
N2 Bi N BNBN?1 N B0B, 

For the method of Tikhonov and Samarskii this equation takes the form 

(12a) 4p~ /bgdx +?2pfXN?1 dx + 2q xl dx = 0 
N2 a (X) N N-1 g(X) N J1g(x) 

It should be noted that this is an approximation, to 0(1/N2), of the equation 

(13) pq 
b dX 

+ + q -0 
a g(x) g(b) g(a) 

The matrix U is singular when p and q lie on a hyperbola, which we denote by 
= 0, where 

z pq + Lp + Mq = 0. 
The coefficients L, M are both positive. We partition the (p, q) plane into sections 
A, B, D where 

(i) A is pq + Lp + Mq _ 0, p + q _ 0, 
(ii) B is pq + Lp + Mq < 0, 
(iii) D is pq + Lp + Mq 0, p + q < 0, 

(see Fig. 1). 

A 

--- _ ---B 
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Let z(X) be the characteristic polynomial of the matrix U, i.e. 

z(X) -det (U - XI) . 

Since U is similar to a symmetric matrix, the polynomial z(X) has (N + 1) 
real zeros; in addition z(X) is clearly positive for large negative X. But in the region 
B, z(O) is negative, and so there must be a zero of z(X) in X < 0. In fact z(X) must 
have an odd number of negative roots. At the point p - N/2, q = -N/2 in 
D the matrix U has at least one negative root, since 

B1 -(Bo +1) I 

-B1 (B1 + B2) -B2 

-BNv-1 (BN- + BN) -BN 

-(BN + BN+l) BN 

which is not positive definite, since 

0 

0 
U* < 

0 

-BN+1 I 

Thus, since z(- oo) > 0 and z(0) > 0 in D, there is an even number of negative 
roots at the point (-N, -N). 

We now exhibit the dependence of z(X) on (p, q) by writing the characteristic 
polynomial as z(p, q, X). The function z = 0 is a surface in (p, q, X) space, cutting 
each vertical line p = constant, q = constant, in (N + 1) points. Let F(p, q) = 0 
be any curve in the (p, q) plane. Let FP0 = 0 be the curve in (p, q, X) space, on 
the surface z = 0, which consists of the points (p, q, Xo(p, q)), where Xo is the 
smallest root of z = 0, for each point (p, q) on r(p, q) = 0. Thus P = 0 is the 
projection of F>, = 0 on the (p, q) plane. Clearly, as (p, q) moves, the curve 
rxo = 0 is continuous. Suppose that (p, q) moves from a point in the region A 
where p > 0 and q > 0, along r = 0. Then initially Xo > 0, and as (p, q) moves, 
Xo cannot change sign unless FP0 = 0 crosses the (p, q) plane; i.e. unless Xo passes 
through a zero. This cannot happen unless rxo = 0 and r = 0 pass through a 
point on 2 = 0 in the (p, q) plane. Thus at every point in A, Xo > 0 except on 
the boundary 2 = 0, when Xo = 0, and the other eigenvalues are positive. If 
P = 0 moves into the region B in which U has an odd number of eigenvalues, Xo 
stays negative and no other eigenvalue changes sign. (A similar argument with 

FXI = 0 will prove that X1 stays positive as r = 0 moves into the region B.) 
At one point in D there are at least two negative eigenvalues Xo and X4. Consid- 
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eration of the curves rxP = 0 and rxP = 0, as (p, q) crosses the boundary between 
B and D, shows that on the boundary Xo < 0 and Xi = 0, and in D there are ex- 
actly two negative roots. 

Thus we may summarize as follows: 
(i) In the region A all eigenvalues are positive. 
(ii) On the boundary between A and B one eigenvalue is zero and the rest are 

positive. 
(iii) In the region B one eigenvalue is negative and the rest are positive. 
(iv) On the boundary between B and D one eigenvalue is negative, one eigen- 

value is zero, and the rest are positive. 
(v) In D there are two negative eigenvalues and the rest are positive. 
The difference scheme (6) will be stable therefore if and only if the values of 

p and q come from the region A or the boundary between the regions A and B. 

5. Numerical Results. In order to demonstrate the results of the preceding sec- 
tions, we considered the problem 

a _u a 1 au \ 
at ax \XL axJ 

in the region 

[2 < x ? 3] X [t ? 0] 

subject to the initial conditions 

u(x 0) = xL+1 4, 2 < x < 3, 

and the boundary conditions 

alu/ax - pu = (L + 1)2L -p(2L+1 _4) x = 2, 

au/ax + qu = (L + 1)3L +q(3L+l _4) x = 3 

where L was taken equal to 1 and 3. 
The method of Tikhonov and Samarskii was used to solve this problem with 

N = 20 and r = 1 and with the following values of p and q for L = I and L = 3: 

Problem (1) (2) (3) (4) (5) 
L-1 
p= 2.00 -0.20 -0.36 -2.00 -3.00 
q = 1.00 1.00 1.00 1.00 -3.00 

L =3 
p= 2.00 -0.10 -0.18 -2.00 -3.00 
q = 1.00 1.00 1.00 1.00 -3.00 

Table 1 shows the maximum error for values of K = 200(200)2000 where K is 
the number of steps in time. Problems (1), (2), (3) are taken with (p, q) in the 
region A and are stable; problems (4) and (5) have (p, q) in the regions B and D 
respectively and are unstable. 



APPROXIMATIONS TO A SELF-ADJOINT PARABOLIC EQUATION 343 

x > x x 
/ O0 b dq b O oo c: * 8r 

dqq cl m C9 
r-4 c Cl C* t- Ct 

.: Cl Cl C) C t I I I I i7 

v~~~~~~~~~~~~~t cq c q t- t d 
0 c~~~~~~~~c 0 0 C 

C0 ) 
. . * * * * * Nl 

r 4 rq -i rq 

0) 0 0 0 10 I0 09 0l 

k- C? t- (O m x m N Cx 
C\l (~ C0 C) 

. X c: Cl4 N N Cl C 

? 

0 C) C0 ) C 0 C0 es 

CD CD CD C C: CD Cl C 

0 0 00 0 01 0 0 0 0 

0 0 0 0 O0 0 0 0 
0: 0 0 0 0 0 0 0 0 .I .l * 0 Cl * 0 

i~~~~~~ C 



344 C. M. CAMPBELL AND P. KEAST 

cl Q0 00 L C9 "t CYD C~ t-. 

cy~ t- (~ C~ ~ r- ~ I 
0I 0 0 .: C?~ ~ Cr Cl 

M-D czl~: C L 0 

u:o o o n tr: n 
0 . . . . Cl *: . C~~ r--q Cc oo 71V 

Ce Rt t- I-i o cJo C 

0q O O O O O q 0 c0 0 

C 0 C"l I-q l ~ t 0l. 0 

0D 0) CD CD CD C CD 

0 0 0) 0- 0 0t 0 0 0 

0 C~~~~~~ 1~~~C C) C 

(71 - cq cq " cq l 

0 0 0) 0f C0 10 Z0 0 0 

C C Cl 0 > 0 Cl Cl CI Cl Cl 
O C C) 5 C) C) C C CD 0 

0 O0 0 0 0q 0 0 0 0 

jSo o 0 

. ~ ~ Cl _ _ _ 0 

:) c) C1 C) O) C) CN1 el C) Cl 

C) 0 CD b CD CD CD C) C 
o" ot (o o o o ot o oc o /~~~~~~~~~~~~~~~~~r- o-- o-- o-- o o o o 



APPROXIMATIONS TO A SELF-ADJOINT PARABOLIC EQUATION 345 

6. The Differential Equation. Consider Eq. (1) subject to the initial condition 
(la) and the boundary conditions 

Ou/Ox-pu = 0, x = a, 

du/dx + qu = 0, x = b, t 0. 

Let u(x, t) = X(x)T(t) so that 

(15) dT/dt -XT 

and 

(16) (d/dx) (9(x)dX(x)/dx)- XX, 

where X is a constant and 

(17) X'(a) -pX(a) = , X'(b) + qX(b) =0. 

Eq. (16) subject to the boundary conditions (17) constitutes a Sturm-Liouville 
problem for the eigenfunctions X(x) and eigenvalues A. The eigenvalues are real, 
distinct and ordered: No < Ni < ... and the corresponding eigenfunctions Xi(x) 
(i = 0, 1, * * *) form an orthonormal set in a < x < b [9]. Then the solution of 
Eq. (1) subject to the initial and boundary conditions is 

00 

(18) t(x, t) = EAiXi(x)eXit 
i-O 

where 

rb 

A= fX(x)y(x)dx. 

The solution (18) is uniformly bounded as t - co if and only if all the eigen- 
values Xi are nonnegative; i.e. if and only if N0 ? 0. 

It has been shown [10] that if p _ 0 and q _ 0 then No > 0. Thus the solu- 
tions of the differential equation are bounded in part of the region A in Fig. 1. We 
wish to prove that the differential equation has bounded solutions if and only if 
(p, q) is a point in A or on the boundary between A and B; that is if and only if 
the difference scheme is stable. 

The Eq. (16) has a zero eigenvalue if and only if 

(d/dx)[g(x)(dX(x)/dx)] = 0 

i.e. when 

X(x)-C dx + X(a) 
a g(x) 

where X(a) and C are constants which are obtained from the boundary conditions. 
The conditions (17) then give the relation 

fbdx l_ q =o (19) 
pq~~~~~~ ag(x) gb)g (a) 
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which is equation (13). Thus there is a zero eigenvalue of the Sturm-Liouville 
problem only on the curve to which 2 tends as N -* oo. By means of an argument 
similar to the one used on z(X) for the discrete case, it may be shown that Xo ? 0 
everywhere in the region A or on the upper branch of the curve (19), where Xo = 0. 
In addition it may be shown that there is one negative eigenvalue between the 
branches of the curve (19); one negative and one zero eigenvalue on the lower 
branch; and two negative eigenvalues in the region inside the lower branch of the 
curve (19), corresponding to the region D. 

7. Conclusion. The numerical instability observed in this paper has therefore 
been traced to the existence of unbounded solutions of the differential equation as 
t -> oo. This type of instability will be apparent only if the difference methods are 
run for large values of t = nk. In some problems it is necessary to run the differ- 
ence methods beyond the stage where initial transients die out (see e.g. [8]) and in 
such problems asymptotic instability will clearly be of importance. Another im- 
portant instance of this kind of instability will occur in the iterative solution of 
systems of equations arising from numerical approximations to Laplace's equation 
in two or more space variables. It is clear that derivative boundary conditions of 
the type discussed in this paper will have an effect on the eigenvalues of the matrices 
occurring in the system and may prevent convergence. This problem, however, will 
be discussed in a later paper. 

The calculations were carried out on the IBM 1620 computer of the University 
of St. Andrews. 
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