
Recursion Formulae 
for Hypergeometric Functions 

By Jet Wimp 

I. Notation. The series definition for the generalized hypergeometric function is 

(1) PQ(bQ ) x E (ap)kx'X 
bQ k=O ~(bQ)kko! 

where 

(2) (a)k= r(a + k)/Fr(a) 

is Pochhammer's symbol and the shorthand product notation above will be used 
throughout this paper. In general, where a parameter has a subscript which is a 
capital letter, the repeated product notation is understood: 

P Q 
(3) (ap)k= fI (aj)k, (n + bQ) = TI(n + bj), etc., 

j=l j=1 

and the * notation 

Q 
(4) (1 + bQ-bh)*= (1 + bj-bh) 

j-1; j#dh 

indicates the term corresponding to j = h is to be deleted. 
If one of the ai = 0 or a negative integer, then (1) always converges, since it 

terminates. Otherwise it converges for all finite x if P < Q and for lxl < 1 if P = 
Q + 1. In this case, however, the function can be analytically continued into the cut 
plane Iarg (1 - x) I < x, and we shall often denote by Q+1FQ(x) not only the series 
(1), whenever it converges, but also the analytic continuation of the series. If P > Q 
+ 1, the series does not converge (unless it terminates) and if one of the bj is 0 or a 
negative integer, the series is not defined. If one of the ai equals one of the bj, PFQ(x) 
reduces to p-1FQ-1(x) and such a case is always excluded from consideration in this 
paper. We assume all pFQ's are irreducible. 

Equation (1) can be given an interpretation for P > Q + 1 by means of the 
G-function 

(5) r(bQ) GVPQ ( 1 - ap) 
r(ap) P'Qk1 0,1I - bQ 

and (5) is (1) (or its analytic continuation) if P < Q + 1. The G-function can be 
defined by a Mellin-Barnes contour integral. 

For a treatment of the generalized hypergeometric function and the G-function, 
see [1]. 

We also assume that (5), wherever it occurs, is irreducible, i.e., that no as equals 
any bj, i = 1, 2, .. *IP,j =1,2, , 2 .Q. 
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II. Introduction. The subject of the recursion relations satisfied by hypergeo- 
metric functions occupies a prominent place in the literature of special functions. 
The functions of this type for which recursion formulae have been given are usually 
special cases of the functions 

(6) U sA - ~(ap)n^A t n + ap+i (6) U, (X) =- (b)(+)P+,FQ?inb,l+y+ 
n()-(bQ)n (Yr + n)n +l+Vn + bQ, 2n + y +1 ' 

or of the polynomials 

(7) Pn(z) - P(dT) R+2FT dr 
n , CR 

or 

(8) Qn(z) P(dT) R+?FT( d CR 

It can be shown that (6)-(8) obey linear recursion relationships of the form 

p 

(9) , [k1 + xlj]Dn+v = 0, 
v=O 

where x = 1/X for (6), x = z for (7) and (8), and k1 = k,(n), 4, = 1>(n) depend on the 
particular function, but not on z or X. Also, ko = 1, lo = 0, and p depends on the 
number of numerator and denominator parameters in the hypergeometric function: 
p = max[P + 1, Q + 2] for (6), p = max[T + 1, R + 2] for (7) and (8). 

Un(X) can be given an interpretation for P > Q + 1 by means of the G-function 

r P(bQ) n l1P+?1( 1 -ap+1 (10) Un ( = rF(ap) rnGP+?,Q+2 
- n,-n-y, 1-bQI' 

mn = (2n + y)r(n + y)/r(n + + 1), 

provided at is not 0 or a negative integer, i = 1, 2, * * *, P + 1. 
There exists a duality between the functions (7) and (10). For instance, we have, 

under a variety of conditions (see [2, Eq. (2.6)] and also related expansions in [3], 
[4]), 

GP+R+1,1 1 1 , bQy dT r(cR)r(ap) ?(_)n(n + 1)n 
GQ+T+1,P+R+1\- XZ CR ~, a-1 E (b-) n% 1) 

X Un (X) Pn (Z)t 
and if, in this multiplication formula, z is replaced by z/ly and -y -* oc, a similar ex- 
pansion in terms of Qn(z) results. 

In fact, any function analytic at z = 0 can be expanded in a series of the poly- 
nomials Pn or Qn, and Fields and Wimp studied such expansions from the standpoint 
of basic series in [6]. Linear combinations of Pny Qn also occur in classes of rational 
approximations to generalized hypergeometric functions, see [7] and the references 
given there. 

For R = 0, T = 1, Pn is related to the Jacobi polynomial, as we have seen, and 
Qn to the Laguerre polynomial. Here p = 2, and the recurrence formulae are classical. 
For R = O, T = 0, Pn is the Bessel polynomial, whose recursion formula and other 
properties have recently been studied by a number of writers, see [8]. 
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Recursion formulae for P. for R = 1, T = 2 (p = 3) have been studied for various 
special values of the parameters, see [9]. For values of p > 3, i.e., larger values of R, 
T, no general results seem to exist in the literature, although general formulae for 
p = 3 have been derived but not published, [6]. 

When P = 1, Q = 0, then p = 2 and Un(X) is related to the Jacobi function, 
Qn (aO whose recursion formula is given in [5]. No general formulae for larger values 
of P, Q seem to be known. However, for special values of -y and A, the recursion 
formula for P = 2, Q = 0 is given in [3], where it was also shown that Un(X) could 
be computed by using (9) in the backward direction. 

Since U.(X) can often be computed by using (9) in the backward direction, and 
P,, and Q, always by using (9) in the forward direction, it is quite desirable to have 
closed form expressions for 4, k,. It was previously doubted that such expressions 
existed, since the derivation of particular recursion formulae has hithertofore in- 
volved solving systems of algebraic equations whose complexity increases rapidly 
with P, Q, R and T. 

In this paper, we determine closed form expressions for the coefficients in the re- 
cursion formula for Un(X). These coefficients are terminating hypergeometric func- 
tions of unit argument. We show that U,(X) satisfies one and only one recursion 
relation of type (9) of a certain order and none of a lower order. We next find a 
number of other solutions of (9), considered as a difference equation. It turns out 
that certain of these solutions are closely related to Pn, and by specialization of a 
certain parameter, we are able to determine the recursion formula for Pn(z). Next, 
by taking a limit as y -> o, we find the recursion formula for Qn(z). 

The author is grateful to his colleagues, Yudell Luke and Jerry Fields, for a 
number of helpful comments and suggestions. 

III. Results. 

THEOREM 1. Let P, Q, n be integers > 0. Let /, y, ai, bj, i = 1, 2, * * , P, j = 1, 
2, * - *, Q be complex constants such that none of the quantities /3 + 1, a s, bj, aY are 
negative integers or zero. Let X be a complex variable, finite and 0, and let ai = i + 1 
for i = P + 1. Then the following statements are true: 

(1) the functions Un(X) as given by (10) satisfy the difference equation 

(12) : [A, + (Dn+v (X) = O, or = max [P + 1, Q + 2], 
v=O 

where 

A 
(-)"(2n ? 'y)X n 1W(n?) ((n+/3?1) 

X vP+3Fp+2 ( n2n + +f + v, n + ap+j + 
?n +y ? o- ? 1, n + ap+j 

B (-)v(2n + 7y)X+(n + / + 1)v(n + bQ) 

(14) ]B,(v)(n + 'y)v(n + ap+i) 

(X Q?2FQ?l 1 -v, 2n + -y + v + 1, n + bQ + 1 1) 
2n + y + o- + 1, n + bQ 

(Ao = 1, Bo = B, = 0); 
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(2) other solutions of (12) are 
Case A. T- = Q + 2; p < Q + 1 or P = Q + 1, Iarg (1 - X)I < w; (here Un(X) 

is given by (6)); 

(X) ~~~~~~( n_ )(P+ 
1),r 

-n 

(15) r' (X) = P(bQ - n - y) r (n + y + 1 - ap+) r (1- y- 2n) 

X p+lFQ+l (ap+ 1- 2n 
- 

) ' 

(16) chOn (X) = r1(2 - bh - n)r(n + -y + 2 - bh) I (1 + bQ - bh) 

X p+1FQ?1( (1 + bQ-bh)*, 2-tbh-n n + y + 2b - ) 

h = 1, 2, ** Q; 
CaseB. o = P+ 1;P > Q+ 1orP = Q+ 1, Iarg(1-1/X)I < 7r; 

ol[h (;2) rn (ah). ( -)n 

(17) r(n + y + 1- ah)r(l + ah - ap+ ) 

X Q?2Fpn + ah, -n - y + ah, 1 - bQ + ah (_)Q+P+i 
(1+ah-ap+)* x 

h = 1,2, * ,+1; 
(3) none of the functions above satisfy any other difference equation of type (12), with 

Ao = 1, Bo = B= 0, of order < CT. 

Note. We assume U. is not reducible for all n, i.e., no bi equals any aj or3 + 1. 
However, for particular values of n, U, may be reducible. Such will be the case if 
anyaj=r + y + 1, j = 1,2, **,P + 1,r aninteger _ 0. 

Proof. First we note that 

(v, v ? +s am N 
(18) M+2Fm+1( + r, aM 

1=0 v, r =0 ,1 , 2 , 

for MlI < r < v, as can be seen by writing out the vth difference with respect to x 
of Hr (X + r + ,u- 1 + t) f 1 (x + aj) at x = 0. This shows that, if (13) and 
(14) are true, then A, = 0, v > CT and B, = 0, v _ (rt in particular, that B, = 0, as 
stated. 

Next, we remark that if P < Q + 1, or P = Q + 1 and Iarg (1 - X) < 7r, then 
Un(X) is precisely (6). If P > Q + 1 or P = Q + 1 and Iarg (1 - 1/X) < 7r, then 
Un(X) is a sum of the functions on[h] (X), h = 1, 2, * - *, P + 1. See [10]. 

Let P < Q + 1 orP - Q + 1 and IXI < 1. By substituting Un(X) into the differ- 
ence equation and equating to zero the coefficient of Xn+k, we find that the theorem 
demands that 

(19) S1(k) + S2(k) a0 , 

where 

(20) S1 (k) = (n + bQ + k) Eor _rn+ v 

(21) S2(k) = (n + ap+ + k) EP(k-v+2)P(2n+v+k+'y-T 2) 
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Now substitute the functions 4, [hi into (12) and equate to zero the coefficient of 
Xk. The result is 

(22) Si(k+ 1-n-bh) + S2(k+ 1-n-bh) O, h = 1,2, * * ,Q, 

with the same value of o- as above. 
Substituting 4rn(X) into (12) and equating to zero the coefficient of X-n+k, we see 

we must have 

(23) Sl(k-2n-'y) + S2(k-2n-'y)-0 . 

Finally, let P > Q + 1 or P = Q + 1 and 1XI > 1 and consider the functions 
0"[h] (X). Proceeding as above, we see that we must have 

(24) Si(-k-ah-n) + S2(-k-ah-n) -O, h = 1, 2, * *,P + 1 . 

If (19) is multiplied by r(k + 1) r(2n + o- + k + 'y + 1) which is defined for all 
k in some right half-plane, then (19) becomes a polynomial in k, and we see that a 
necessary and sufficient condition for (19) to hold is that 

(25) (n + bQ + k)fl(k) + (n + ap+i + k)f2(k) = 0, 

(26) f(l(k) = j (-)(-1k),(2n + k + v + y + l 
v=O 

a_I 

(27) f2(k) = , (-)V-1(-1k)v_(2n + k + v + y + 2),V-1 B7, 
v=l 

where k is a generally complex-valued variable, and 

(28) Av = n+A,v BV = mn+vBv . 

Thus, if A7v B7 can be chosen so that (25) holds, the functions Un, V/n, q5n[hi 0nt'h 

will satisfy the difference equation whenever the series defining them converge, since 
(19)-(24) are all equivalent to (25)-(27). 

We now discuss the quantity o-, which up till now has been unspecified. 
Note thatfl(k) is a polynomial in k of degree o- at most and, since no bi equals any 

aiori3 + 1,haszerosat k = -n-a,i = 1, 2,* ,P+ 1. 
Or 

(29) fi(k) = (n + ap+i + k)Mr(k)X 

where Mr(k) is a polynomial of degree r in k. Neither fl nor Mr can be identically 
zero, since 

(30) f (0) = (2n + y + ?1)ao 

Equation (29) shows that, for some integer mi, mi _ 0, r- m = P + r + 1 or 
o( _P? + 1. 

Likewise, f2 is a polynomial of degree o - 2 at most and 

(31) f2(k) = (n + bQ + k)Ns(k) , 

where N, is a polynomial of degree s in k. Setting k = 0 in (25) gives 

(32) 7Th = -(n + bQ)(2n + y + 1)2>aO/(n + ap+i) 

and clearly this is the only possible value of 71. 
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Furthermore, 

(33) f2(0) =-(n + bQ)(2n + y + l)a o/(n + ap+i) 

so Ns(k) 3 0, f2(k) p 0; (31) shows that, for some integer m2 > 0 o- - m2-2 = 

Q + soro- > Q + 2. 
Thus, the smallest possible value of o- is 

(34) o- = max [P + 1, Q + 2]. 

Assume o- has this value. We will show that A,, B7, (hence, Al, B,) are then uniquely 
determined by (25) and that A, p 0, which means that no other recursion relation- 
ship of order < o- exists for any of the given functions, i.e., statement (3) of the theo- 
rem. (It is clear, however, that larger values of o- are possible, e.g., add to (12) the 
recursion relationship obtained by replacing n by n + 1 and the result is a recursion 
formula of order o- + 1.) 

LEMMA 1. Let the conditions of the theorem hold. Then (25) is true if and only if a, 
B7 are such that 

(35) f'(k) (2n + y + 1)ff(n + ap+1 + k) o/(n + ap+1), 

(36) f2(k) -(2n + y + 1)a(n + bQ + k)Ao/(n + ap4i) 

If k is assigned o- distinct values in (35) and o- 2 distinct values in (36), then AT, 
v = 1, 2, ... *, c and BP, v = 2, 3, * * - 1 are uniquely determined and so, by (28), 
are Al, Bv. Also, A, 3 0. 

Proof. First assume P > Q + 1, o- = P + 1. Then fl(k) is a polynomial of degree 
P + 1 at most. But since f1(k) 3 O, (29) shows it must be exactly of degree P + 1, 
and 

(37) f1(k) = K(n + ap+i + k). 

Letting k = 0 and using (30) determines K, and when (35) is substituted into (25), 
(36) follows. 

Let P < Q + 1, o- = Q + 2;f2(k) is a polynoomial in k of degree Q at most. As 
before, f2(k) 0 0 and so 

(38) f2(k) = K'(n + bQ + k). 

Letting k = 0 and using (33) we find K' whence (36) follows. When (36) is substi- 
tuted into (25), (35) results. 

Now let o- distinct values ki, i = 1, 2, * *, o- be assigned to k in (35). The result 
is o- nonhomogeneous equations in the o- unknowns Al, v = 1, 2, .*., o-. Now this 
system has a unique solution which is independent of the values of k assigned. 

Let VR denote the alternate determinant 
R m-1 

(39) VR(XR) = 1i,j=1, H -R (Xm - Xm-I). 
m=2 1=1 

Here and in what follows, -ii is the element iia the ith row and jth colunu of the 
determinant I rsJ ij j=12 2,R. RThe determinant of the system formed from (35) is 

(40) D = I (-)j-(l - ki)j1(2n + ki + j + y + l)a-jl i,j=1,2,-..,o 

which, by [11], is 
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(41) D = KVa(ka) 

and K is independent of the ki's. To determine K, let ki = i. The resulting determi- 
nant is triangular, and we find 

(42) D = V<(ka) H (2n + 2i +'y + 1) ?i 

so, under our hypotheses, D # 0. If the system is solved by Cramer's rule, it can be 
verified that Va(ka) also factors out of each numerator determinant, leaving a quan- 
tity independent of the ki's. Thus, Av is uniquely determined by (35), and similarly 
one can show that B7 is uniquely determined by (36), with B1 given by (32). Aai 
hence Aa, can be found by putting k = - - - 2n in (35), and the result is dis- 
played in Theorem 2, Eq. (52). Under our hypothesis, A?, 4 0. 

It remains to prove that A, B, are indeed given by (13) and (14). For this, we 
require two more lemmas. 

LEMMA 2. Let k, b and z be complex quantities, b + k + 1 # 0, -1, -2, ***, and 
s an integer > 0. Then 

3 ~~~~~z(k +b) + (-k).?1(b + z),?1 
(43) j(b+2v)+k)v(b+z), (b + k + 1),(1 - z), 

P=o (1- z),(b + k + I)p (z -k) 
Remark. Since the left-hand side and the right-hand side of (43) are the same 

meromorphic function of z, they have the same residues at the simple poles z = 
2,** *, s and possess the same limit as z - k. 

Proof. By induction on s. 
LEMMA 3. If 

(44) fk= (a+) k = 0, 1,2, * , M > 0 

then 

(45) 9v - (a 2V1I_ _ _ _ __ _ _ _ 
( ) 9v Vl E~~~~~O s!.(a + s + V -1 

provided a 5 0, -1, -2, 
Proof. The determinant of the system is nonzero, so (44) has a unique solution. 

The lemma then results by substituting (45) in (44), interchanging the order of 
summation, and using Lemma 2 with z = 0. 

Now, in (35) let k = 0, 1, 2, *, c. Then 

(46) fk= E (-k)l,x(-_)v _ (2n + y + 1),(n + ap+l + k)X o 
f = (2n + y + k + 1). (n + ap+1) (2n + y + k + 1)a 

and this system is the form in Lemma 3 with g, = (-)v_!,, a = 2n + y + 1. Thus, 
Aq and hence A, is easily found and the result is (13). 7v is similarly determined by 
applying Lemma 3 to (36). 

The extension of the theorem to values X such that I arg (1 - X) I < ir in Case A, 
P = Q + 1, or Iarg (1 - 1/X)1 < ir in Case B, P = Q + 1 is immediate by the 
permanence principle for functional equations [12]. 
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The proof of Theorem 1 is complete. 
Note that no restrictions on bi enter in the proof of the theorem; the restriction 

that bs # ,- 1,-2, **, arises from the definition (6). In fact, by slightly modify- 
ing (12) (e.g., multiplying by (n + ap+i)) or the solutions of the difference equation 
(e.g., dividing Un(X) by r(bQ)), the theorem can be made valid for at, bj negative 
integers. Also, 4% may be redefined so that the theorem will hold for all values of 
3 + 1 and y. 

Now if no two of the quantities [n, bQ, - y- n] differ by an integer or zero, all 
the solutions in Case A are distinct, and if no two of the quantities [ap+i] differ by an 
integer or zero, all the solutions in Case B are distinct. In fact, under these restric- 
tions the functions in each group are linearly independent functions of X, as is seen 
by comparing their behavior near X = 0 or X = oo. This is not at all the same as 
asserting that the functions in either group are linearly independent as functions of n. 

If 2n + y is an integer, 4/,(X) is proportional to Un(X), while if two of the quanti- 
ties [bQ] (or [ap+i]) differ by an integer or zero, then two of the functions [cpntQ]] (or 
[06[P+1]]) are proportional. However, in any of these cases a distinct set of solutions 
can be constructed. For example, let as = aj + m, m = 0, 1, 2, 3, * .. Then one 
forms an appropriate difference of the functions 0,,[i], Ot[I] for as = aj + m + E, 
divides by e, and lets E -> 0. See [13] for the mechanics of this procedure. 

We will subsequently need the following integral representations of (13) and 
(14). 

LEMMA 4. Let none of the quantities 'y, ai, i = 1, 2, * , P + 1 be negative integers 
or zero. Then, for general o-, we have 

Vn4, F _ J (2n + y + ? + z)r(-z) (n + ap+i + z)dz 
( 2ri r, r(2n + y + o- + i + z)r(v + 1-z) 

(48) BP = Vn, f r(2n + y + v + 1 + z)r(-z)(n + bQ + z)dz 
( 

2ri rP.1 P(2n + 
y 
+ o- + 1 + z)r(v-z) 

=(-) P+'(2n ? y')e+i(n + fi ? 1), (49) Vn, v (n + y),(ap+l + n) 

and rm denotes a simple closed path enclosing the points z = 0, 1, 2, * m but no other 
singularities of the integrand. 

Proof. By the residue theorem. Note that rm is a feasible path since, were any of 
the poles of F(2n + y + v + z) (or r(2n + y + v + z + 1)) to coincide with any 
of the poles of 1 (-z), then y would be zero or a negative integer. 

We now give alternate representations of A,, B, which are useful when v is larger 
than [or/2]. 

THEOREM 2. Let none of the quantities -y, 3 + 1, as, i = 1, 2, ** , P be negative 
integers or zero. Then 

A - =(_)+P+1(2n + y)ff+,(n + t+ 1)P(n + y + p - ap+i) 

(50) r (o + 1- ) (n + y),(2n + y + v) +i (n + ap+i) 

X pFp'2 - o, 2n + zy + , n + y + ' +1 - ap+i 
XP+3P+2\2n + y + 2v + 1, n + y 

+7' - ap+ 
1 
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B = (-)v+Q(2n + Py)ff+?(n + t + l)v(n + y + + 1- bQ) 
(51) ^- r (n + y)v(2n + y + v + 1)v(n + ap+,) 

X +F 1-o, 2n + y + v + 1, n + y + p + 2- bQ I 
XQ+2FQ+1\2n + y + 2v + 1, n + y + p + 1- bQ, 

and in particular 

(52) A (-),f+P+(2n + -y),(n + /3 + 1),(n + y + 0*- 
ap+i) 

(n + y),f(2n + + o + l),(n + ap+?) 

Proof. We prove (50) only, since (51) follows similarly. Denote the integrand of 
(47) by Ln(z). It has poles at the points am = -2n - y- m, m = , 1, * *, 
and mn, m = O, 1, 2, P, v. The integral around any large circle containing both 

{Yn} and {am} is zero, since Ln(z) = O { ZPl-0-1 } z -co , and is a rational function 
of z. If Av, is any simple closed curve containing the points { mi } but none of the points 
{am}, then 

(53) 
rv Av 

and (50), and hence (52), follow immediately by the residue theorem. (Note the 
hypotheses separate the points { m } from { am }.) 

Because of the form of the functions 0,[h] (X), Theorems 1 and 2 enable us to give 
explicit recurrence formulae for the classes of hypergeometric polynomials studied 
in [4]. 

COROLLARY 1. Let R and T be integers > 0, r = max [T + 1, R + 2]. Let y, c, 

di, i = 1, 2, *,, R j = 1, 2, , T + 1, (d =l for j= T + 1) be complex con- 
stants such that none of the quantities y, y + 1 -di, j = 1, 2, * , T are negative 
integers or zero. Then the hypergeometric polynomials Pn(z), see (7), satisfy the re- 
cursion relationship 

(54) [C, + zDv]Pn-v(z) = 0 n =,r+ 1, r + 2, 
v=o 

where 

(-)v(n + 1 - ),(l- - 2n)2v(n - v-1 + dT+l) 
c = 

v!(n + -y - ,v(-r + I1-y -2n)v,(n + dT+1 -1) 

X T+FT2(-P, 2n + y-r-P, n-V + dT+1 
) 

\2n + -y +1 - 2v, n - v - 1 + dT+ 1 

and 

(-)v+l(n + 1 - P)v(1 -- 2n)2v(n- P + CR) 

D56 = P(v)(n + y - v),(l + r - - 2n), 1(n + dT+1 - 1) 
(56)/ 

X R+FR (1 - v, 2n + -y + 1 
r - 
T v, n + 1- V + CR |1 

R? 12n + y + 1- 2v', n - V-'+ CR 

andDo =DT = 0. 
Proof. In On'P+"](X) let Q = R, P = T, aj = y + 1 - dj (dT+1 = 1), bj = 'y + 

1- c, 3 + 1 = ', z = (-)Q+P+l/X, o- = r. Then (55) and (56) follow from Theo- 
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rem 2 when the sums are turned around and n is replaced by n - r; since the poly- 
nomials are computed in the forward direction, this is the more useful form of the 
recursion relationship. Note that it is not necessary to assume P > Q + 1 in using 
Theorem 2. Since On [P+1] (X) terminates, the recursion formula is valid for all P, Q. 
Also, alternate forms for CG, D, which are useful when v > [a12] can be determined 
from Theorem 1. 

COROLLARY 2. Let R and T be integers > 0, r = max [T + 1, R + 2], and let ci, 
d1, i = 1,2, , R, j = 1, 2, *, T + 1 be complex constants, (dj = 1 for j = 7' 
+ 1). Then the hypergeometric polynomials Qn(z), see (8), satisfy the recursion rela- 
tionship 

12 

(57) 2 E,Qn-,(Z) + z x FvQn-(z) = 0, 

11 = min [r, T + 11, 12 = min [,r - 1, R + 1], n = r + 3, r + a + 1, r + a + 
2,*..,8=Oor-1,where 

(58) Ep 
_ (n +1- vX(n - v-1+ dT+l) 112F(1-'n-v+dT+l 

i' 

W(+(n + dT?1 - 1) T+2nT+ - - 1+dT +l , 

(59) F, (n + - v)v(n - v + CR) R+FR(1 v, n + 1 - V + CR 

Proof. Let 

(60) Q, (7 ) (Z) = Pn (Z()) 

Then 

(61) lim Qn,) (z) = Q, (Z) 

If we form the difference equation for Qn (,)(z) we see we must have 

(62) lim C, = E^, lim Y 'D, = E,. 
7-4oo 7-00 

Using (55), (56) to take the limits term by term gives (58) and (59). 
Note that E, vanishes for v > T + 1 and F, for v > R + 1 since they may be 

expressed as the vth difference of (n + dT+1 - 1 - i'+ x) or the (v - 1)th difference 
of (n + CR - V + x) respectively evaluated at x = 0. 
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