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By Eldon R. Hansen 

Introduction. In this paper, we consider the problem of applying interval arith- 
metic to bound a solution of a system of nonlinear equations. Moore [1, Section 
7.3] has discussed the same problem. His approach, as well as ours, is to extend the 
multidimensional Newton method and implement it in interval arithmetic. 

In Section 2, it is shown that a particular detail of Moore's method can be 
modified to improve convergence and yield sharper bounds. In extreme cases, the 
modification can yield convergence where the original method fails. 

To illustrate this procedure, we consider (in Section 3) the problem of bound- 
ing complex roots of polynomials. Previous literature on the use of interval arith- 
metic to bound polynomial roots was restricted to the case of real polynomials 
with real roots. We use the obvious expedient of separating a polynomial equation 
into real and imaginary parts. This yields two real equations in two real variables 
to be solved by the method of Section 2. 

In Section 4, we consider the matrix eigenvalue-vector problem. Bounds for the 
solution of this problem are obtained by a method which is essentially that of Sec- 
tion 2. We show that our method is directly related to Wielandt inverse iteration. 

1. First Formulation. Let fi(x) (i = 1, 2, * * *, n) be a real rational function of 
a real vector x. Let f(x) denote the vector with components f (x) (i = 1, 2, .. , n). 
Assume 

(1.1) f(y) = 0; 

that is, y is a desired solution vector. To obtain the method as described by Moore, 
we expand f(x) in a Taylor series with remainder about the point y and obtain 

n 

(1.2) f(x) = f(y) + Z(xi-yi) - f[y + Oi(x-y)] 
where Oi E [0, 1]. Since f(y) = 0, (1.2) becomes 

(1.3) J(x-y) =f(x) 

where J is the Jacobian matrix with elements 

(1.4) Jii = 
a 

fi[y + 0i(X- 0 

As in [3], we define an interval vector (matrix) to be a vector (matrix) whose 
elements are interval numbers. 

Let X(?) be an interval vector containing both x and y. Then 
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(1.5) Y + Oi(x - y) E X(?) 
since O El [0, 1]. Let J(X(O)) denote the interval matrix obtained from J by re- 
placing y + Oi(x - y) by X(?) for all i. We assume J(X(0)) does not contain a 
singular matrix. Let V(X(0)) be an interval matrix containing the inverse of J(X(O)). 
(For a discussion of the inverse of an interval matrix, see [3], [9], or Chapter 5 of 
[1].) Then J-1 E V(X(0)) for all O E& [0, 1] and hence the solution vector y is con- 
tained in 

(1.6) Y(O) = x - V(X(0))(x) 

Define X(1) = X(o) n Y(?'. Note X(1) contains the solution Y since X(O) and 
Y(O) do. We next replace x by the midpoint of X(1), replace X(O) by X(1) and re- 
peat the procedure. In this way, we obtain a sequence of interval vectors X( 
(i = 0, 1, 2, *. ) each containing the solution vector y. Under appropriate con- 
ditions, these interval vectors converge to the solution y. 

This is the method proposed by Moore. Note that every element of J may be 
an interval. 

2. Alternate Formulation. We now describe how certain elements of J can be 
replaced by real numbers while the remaining elements remain unchanged. Such a 
change improves accuracy, improves convergence, and succeeds in some extreme 
instances where Moore's procedure fails. 

Consider a scalar function g(x) of a vector x. We can get an equation similar 
to (1.2) for g(x) by expanding g[y + O(x - y)] as a function of the single variable 
0. Alternately, we may proceed sequentially as follows. Considering g(x) as a func- 
tion of the single variable xi, we obtain 

(2.1) g(x) = g(yl, X2, * *, xn) + (xl - Yl) 
a 

g[Y1 + 01(x1 - Y)) x22 2 xn] 

Next, consider g(yi, X2, * xn) as a function of the single variable X2 and obtain 

g(y1, X2, , Xn) = g(y1, Y2, X3, * , Xn) 
(2.2) a 

+ (X2 - Y2) aX2gtY1 Y2 t- 02kX2 - Y2), X3, ..., XnJ 

Next, expand g(yi, Y2, X3, ..., Xn) as a function of X3, and so forth. Finally, we 
expand g(yi, , yn-1, xn) as a function of xn. For each of these expansions, 
Oi E- [O, 1] (i = 1, 2, .. * , n). 

Combining these results, 

(2.3) g(x) =dg(y)+ (xi-yi) - 
'9xi 

where the argument of ag/Oxi is yi, y yi-1, yi ? 0i(xi -yX), X+1, * * xn. Let 
g denote one of the components fj in the above problem. We see that, while the 
arguments yi, * , Iyi-i, yi + 0i(xi - yi) are unknown, the remaining arguments 
Xi+1 .. *, xn are known. Hence, only the first i arguments of Of1/axi need be re- 
placed by the intervals X1, * * , Xi, respectively. The last n - i elements remain 
scalars. Let JI denote the matrix with elements 
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(09aXiVXl .. \- 2 Xi Xi l ...+1 2 Xn) 

Sharper results will be obtained, in general, using JI in (1.3) rather than J(X(o)). 
At any rate, the results cannot be worse. If JI is used, then, as before, each de- 
rived vector XW contains the solution vector y. 

A more useful expansion would be one in which even more of the arguments of 
the first partial derivatives are xi rather than y* or Yi + 0*(x* - yi). The author 
knows of no such expansion. 

This sequential derivation could be modified by changing the order in which 
the expansions were performed. In order to consider which is the most desirable 
order, consider the following: 

Let J* be the matrix with elements given by (1.4) with Oi = 1 (i = 1, 2, * *, n). 
Using this matrix, Eq. (1.3) becomes J*(x - y*) = f(x). If the solution y* of this 
equation varies rapidly (in some sense) as xi changes in row k of J* and varies 
slowly as xj changes in row k, then we prefer to use arguments xi and Xj in row 
k of the interval matrix JI rather than arguments Xi and x;. The former choice 
yields a sharper interval solution Y. In the absence of such knowledge about y*, 
we may use the natural order as given above. Thus, for example, if n = 3, the ith 
row of the Jacobian matrix J would become 

(2.4) dx fi(Xl(o) X3), .dfi(X )2 X2(?) , X3) f i(X () X(?) Xi()) 

Note that the jth argument of afi/Oxj is always an interval. Hence if, for all i, 
this derivative is a function of x; only, no improvement in method occurs. 

An additional improvement of Moore's method is obtained if we solve an in- 
terval version of the system of linear equations (1.3), J(X(0))(x - y) = f(x), 
without inverting J(X(0)). For details of such methods, see [4] or [9]. 

3. Polynomial Roots. Moore [1] also discusses the problem of using an interval 
version of Newton's method to find real roots of real polynomials. Given an initial 
interval containing a root, his method has the important feature that succeeding 
intervals, obtained by the method, also contain the root. Unfortunately, this prop- 
erty does not carry over to the complex case. This is because the mean value 
theorem (which assures this property) fails to hold. 

However, by expressing the polynomial in terms of its real and imaginary parts 
we obtain two equations in two unknowns; therefore, the method of the previous 
section can be used. Starting with a rectangle in the complex plane known to con- 
tain a root, we obtain a nested sequence of rectangles converging (under appro- 
priate conditions) to the root of the polynomial. 

In practice, it seems best to obtain an approximate solution using ordinary 
(real or complex) arithmetic. An error bounding procedure can then be used to 
provide the initial region containing a root. This error bound can then be refined 
using the interval procedure. 

The initial error bound can be rather crude. The bound expressed in the follow- 
ing theorem is derived (and refined) by Champagne [2]. 

THEOREM. Given Zi and a polynomial p(z) of degree n, there exists a zero of p(z) 
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in the circle in the complex plane with center Zi and radius ip(zi)/an 1'I, where an is 
the coefficient Of z in p(z). 

We illustrate the methods of this and the previous section by an example. Con- 
sider the polynomial 

p(z) = 9z2 - 6iz - 19 
(3.1) = 9(z-i/3-21/2)(z- i/3 + 21/2) 

Let z = Xl + ix2. Then 

(3.2) p(Z) = 9(X12 - X22) + 6x2 -19 + 6ixl(3x2 - 1) . 

Denote the real and imaginary parts of p(z) by 

(3.3) fl(xl, X2) = 9(x12 - X22) + 6X2 - 19 

and 

(3.4) f2(xl, X2) = 6xi(3X2 - 1), 

respectively. We thus have the vector function f(x). We seek a vector 

y= [=:] 
such that f(y) = 0 as in Eq. (1.1). 

For illustrative purposes, we begin with the poor approximation z = 

1.41 + 0.33i. That is, xi = 1.41 and X2 = 0.33. Thus, 

Ip(Z)12 = [fl(xi, X2) ]2 + Uf2(x1, X2)]2 = 0.018649 

and lp(z)/an"l12 < 0.12319. Applying the above theorem, we see that p(z) has a 
root in the circle with center 1.41 + 0.33i and radius 0.12319. We shall use a 
cruder bound obtained in another way. We replace the value of the radius by 
0.36955 and replace the circular bounding region by a square containing it. Thus, 
we know there is a root of p(x) whose real part is in the interval Xi(O) = 
[1.41 - 0.36955, 1.41 + 0.369550] C [1.0404, 1.7796] = Xi(o) and whose imaginary 
part is in 

[0.33 - 0.36955, 0.33 + 0.36955] = [-0.03955, 0.69955] = X2(?) 

We now apply the method of Section 2. Note that af,/axi (i = 1, 2) is a func- 
tion of xi alone. Hence, the order in which we perform the Taylor expansions of 
f, is irrelevant. This is not the case for f2. Denote the elements of the matrix J by 

A- = B=' C and D _ 

ax1 0X2 ' xl 0X2 

When these elements become intervals, the second row can be either 

(3.5) Cl = C(Xl, X2) I D1 = D(Xl, X2) , 

or 

(3.6) C2 = C(X1, X2) , D2 = D(xi, X2). 

That is, it can be either 
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18x2-6, 18X1 or 18X2-6, 18xi. 

For this two-dimensional case, we can write down the solution to (1.3). We 
have 

(3.7) yi = xl- (1/A)(Df1 -Bf2) 

(3.8) Y2 = X2 - (1/ A) (Af2 - Cfl) 

where 

(3.9) A = AD-BC. 

Using (3.5), the interval versions of (3.7) and (3.8) are 

(3.10) r _ _ D(X1, X2)fl(xl, X2) - B(X1, X2)f2 (xl, X2) 

(3.10) = xl - A (Xi, X2)D(Xi, X2) - B(X1, X2)C(Xi, X2)' 

(3.11) Y2 = X2 - - A (Xi, X2)f2(xl, X2) - 
C(Xl, X2)fl(Xl, X2) 

(3.11) = X - A (X1, X2)D (X1, X2) -B (Xi, X2)C (Xly X2) 

For simplicity, we have written both arguments of A and B as intervals. Using 
(3.6), the interval versions of (3.7) and (3.8) are 

(3 12) Y _ D (xl, X2)fl (X, X2) -B (X1, X2)f2 (xI, X2) 
(3.12)*= - A (X1, X2)D (xi, X2) - B(X1, X2)C(X1, X2) 

(3.13) = _ - A(Xi, X2)f2(xl, X2) - 
C(Xly X2)fl(xi, X2) 

A(XI, X2)D(xi, X2) - B(Xi, X2)C(Xl, X2) 

In (3.10) and (3.11) a noninterval argument of A, B, C, and/or D occurs in 
three places; and the same is true of the solution given by (3.12) and (3.13). How- 
ever, if we use the solution expressed by (3.11) and (3.12), noninterval arguments 
occur in four places. Hence, this is the best choice (in the absence of further in- 
formationi as was indicated earlier). For higher-order systems, this device becomes 
impractical. We are using one form of J to solve for Y1 and another to solve for 
Y2. Thus, we are essentially solving a set of n (here n = 2) linear equations n 
times. For the simple case n = 2, the sharper results usually are worth the extra 
work. This is especially true when A and/or B are also functions of an argument 
which can be noninterval. 

We now continue with our example. Choose xi as the center of X1(O) 
= [1.0404, 1.7796], i.e., xi = 1.41. Similarly, X2 = 0.33, the center of X2(?) 
= [-0.03955, 0.69955]. Substituting these values for x and X(0) into (3.12) we 
obtain 

Yi(0) = [1.4138, 1.4177] 

and hence 

xl(l) = x1(o) n Yi(o) = Yi(o) 

This result was obtained using five decimal digits of significance and rounding so 
that the interval resulting from each operation contains the exact result for that 
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operation. Using Moore's formulation in which all arguments of A, B, C, and D 
are intervals, we would obtain 

Yi(O) = [1.4113, 1.4231]. 

This ilnterval is more than three times as wide as that obtained above. 
We now wish to find y2(O). If we used (3.13), we would not have to recalculate 

the denominator in the right member since this would have been evaluated in find- 
ing Y1(O). However, we shall use (3.11) for reasons indicated above. It is important 
to note that we can use Xi = Xl(l) rather than Xi = X1(?). This is the benefit 
gained at the expense of having to recalculate the denominator in the right member. 

Note that xi = 1.41 is not contained in XiMl. Hence, we must redefine xi (and 
recompute f, and f2) in order to assure that Y2(o) contains the solution element Y2. 

We choose xi = 1.4158, the approximate center of Xl(l). Equation (3.11) yields 

Y2(O) = [0.33290, 0.33377], and X2(1) = X2(o) nY y2() = Y2 () . 

We now begin again with X2 = 0.33334, the center of X2(1). Eq. (3.12) yields 

Yi(1) = [1.4141, 1.4143] = X1(2). 

We next use xi = 1.4142, apply (3.11) and obtain 

Y2(1) = [0.33333, 0.33335] = X2 

The ultimate accuracy (i.e., the widths of the intervals containing the solution 
values) depends on precision used in the computation. Using five decimal digits, 
greater or less accuracy than obtained here can be gotten by appropriate use, or 
lack of use, of semi-double-precision operations such as double-precision accumu- 
lation of scalar products. 

Using infinite precision to continue the process begun above, the iterates con- 
verge to the solution vector 

r21/2- 
L1/3- 

4. The Matrix Eigenvalue Problem. The matrix eigenvalue problem can be 
solved by the method of Section 2 to yield bounds on the eigensolutions. However, 
we shall derive a procedure that permits use of complex arithmetic so that it is not 
necessary to separate the problem into real and imaginary parts. 

Given a matrix A of order n, let X be an eigenvalue and x the corresponding 
eigenvector. Then 

(4.1) (A - XI)x = 0. 

Let j be such that xj z 0 and normalize x so that xj = 1. In practice we might 
choose j so that 1xjl ? ixiJ for all i = 1, 2, ... , n. For simplicity assume j = n. 
Eq. (4.1) now consists of n equations in the unknowns xi, X2, I xn-,i and X. 
We could solve these equations by the method of Section 2. 

However, we now consider an alternative procedure. Let ,u = X + AX be an 
approximate eigenvalue and v = x + Ax an approximation for the corresponding 
eigenvector. Assume vn 5 0 (note xn 5 0 by assumption) and normalize v so that 
zn = 1. Then Axn = 0. 
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Expanding in Taylor series (without remainder), we obtain 

(4.2) (A - gI)v = (A - XI)x - xAX + (A - XI)Ax - AXAx. 

Note the series terminates since (A - I)v is bilinear in g and v. Since (A - XI)x 
= 0, we can rewrite (4.2) either as 

(4.3) (A - gI)V = -xAX + (A - gI)Ax 

or as 

(4.4) (A - gI)V -vAX + (A - XI)Ax. 

Other forms could be obtained by combining separate components of AX Ax with 
other terms in the equation. However, the two given forms seem to be of most 
interest. 

Define the column vectors 

(4.5) p = (xi, xn-_, X)T 

and 

(4.6) Ap = (Axi, ., AXn_,, AX)T 

where the superscript T denotes the transpose. Let ei denote the ith column of 
the identity matrix. Then 

(4.7) Ax = (I - enenT)Ap 

and 

(4.8) AX = enT Ap. 

Hence, we can rewrite (4.3) and (4.4) as 

(4.9) (A - gI)v = [(A - gI)(I - enenT) - XenT]Ap 

and 

(4.10) (A - gI)v = [(A - X1)(I - enenT) - venT]Ap, 

respectively. 

Define the matrices 

(4.11) B(v, X) = (A - XI)(I - enenT) - venT 

and 

(4.12) C(x, g) = (A - gI)(I - enenT) - XenT 

and let 

(4.13) b =(A - gI)v. 

Then (4.9) and (4.10) can be written as 

(4.14) C(x,g)Ap = b 

and 
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(4.15) B(v, X)Ap =b 

respectively. If we could solve one of these equations for Ap, we could obtain the 
desired solution vector p. However, the coefficient matrices involve unknowns. The 
matrix B involves X and C involves x. If we knew a bound for x such as x E x 
where xI is an interval vector, we could replace (4.14) by 

(4.16) C(x', g) Ap = b 

and solve for Ap (now an interval) by a method described in [4] and [9]. The so- 
lution ApI thus obtained will contain the exact correction Ap. More commonly, 
we obtain a bound on X, say X (E XI, where XI is an interval. We can replace X in 
B by XI and solve (4.15) in the interval form 

(4.17) B(v, XI)Ap = b 

for the (interval) vector Ap. Again, the solution Ap' thus obtained will contain 
the exact correction Ap. Using the (hopefully) improved bound for X, the pro- 
cedure can be repeated. 

We shall use (4.17). We have derived (4.16) also to illustrate the choices of 
formulation. These choices correspond to the previous choices of order in which 
Taylor series expansions were made in Section 2. 

Note that the intervals being discussed could be complex, that is, rectangles in 
the complex plane. (For analytical purposes, circles could be used; but no practical 
procedure for an "interval" arithmetic using anything but rectangles has yet been 
devised.) For a discussion of complex interval arithmetic, see [5]. 

Since the solution Ap' to (4.17) contains the exact Ap, we obtain a bound on 
the eigenvector x knowing an initial bound on the eigenvalue alone. 

Note that the matrix A could itself be an interval matrix. We shall discuss this 
case and other aspects of the method in another paper. 

4.1. A shortcoming of the method. Note also that if the matrix B(v, XA) contains 
a singular matrix, Eq. (4.17) cannot be solved. This must occur if v = x and XI 
contains more than one eigenvalue (including the case of a multiple eigenvalue). 
To see this, let X' denote an eigenvalue of A, where X' C Al. If X' 5 X, there is a 
row eigenvector yT such that 

(4.18) yT(A -'I) = 0 

and 

(4.19) yTx = 0. 

Now B(x, X) E B(x, X1) and, from (4.11) 

yTB(x, A) = yT(A - 'I)(I - enenT) - yTXenT 

so that from (4.18) and (4.19), 

yTB(x, XI) = . 

Hence, B(x, ') must be singular. 
If X' = X, then A - XI is of rank r ? n - 2 and hence the rank of 

(A - XI) (I - enenT) cannot exceed n - 2. Therefore, since xenT is of ranik 1, 
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B(x, X) is of rank n - 1 at most. That is, B(x, X) is singular if X is a multiple eigen- 
value. 

If B(v, XI) contains a singular matrix so that the above method fails, alterna- 
tive procedures can be used. In another paper, we shall describe the interval arith- 
metic implementation of methods discussed by Wilkinson in [7] and pp. 170-188 
and 637-647 of [8]. For the non-Hermitian case, this requires computation of ap- 
proximations for all the eigenvectors of A in order to bound one eigenvector. The 
above method requires only an approximation for the eigenvector we seek to 
bound. Another (noninterval) method, somewhat similar to the one discussed above, 
is derived by Rall [6]. It, too, does not require approximations for all the eigen- 
vectors. 

4.2. Relation to inverse iteration. An ordinary arithmetic version of the above 
method is equivalent to inverse (Wielandt) iteration (see p. 619 of [8]). The or- 
dinary Newton method would use (4.9) with x replaced by v or, what is the same, 
(4.10) with X replaced by ,. We thus have 

(4.20) [(A - ,uI)((I - ene.T) - veT] Ap = (A - gI)v. 

Assume A - ,I is nonsingular. Then (4.20) can be rewritten as 

(4.21) [I - eneT - (A - ,I)-lveaT] Ap = V. 

It can be easily verified that the solution to (4.21) is 

(4.22) Ap = {I - (1/N)[enenT + (A - I)-'vejT] }v 

where 

N = enT(A -l)-Iv. 

Thus, the next approximation for x is 

(4.23) v = v - (I - eeT) Ap = (1/N) (A - I)-lv 

since vn = 1. The scalar N is merely a normalization such that v.' = 1. Equation 
(4.23) shows that the change in v using (4.20) is the same as one step of inverse 
iteration. 

Solving (4.20) also yields a new approximation for the eigenvalue. From (4.21), 

A' = Au-enTAp=gA + 1/N, 

since v,, = 1. This is a rather obvious choice for ,'; note that for v equal to the 
exact eigenvector, x, we have N = 1/(X - g) and hence A' = X. More sophisticated 
choices using Aitken's acceleration technique (see Section 2.1.5 of [10]) or the 
Rayleigh quotient (see p. 636 of [8]) could be used. 

We thus see that one step of the Newton method is equivalent to one step of 
inverse iteration with a somewhat crude improvement of the approximate eigen- 
value. 

4.3. An example. We conclude by presenting a simple example. Consider the 
matrix 

(4.24) A [ 1 3] 
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which has eigenvalues 2 [3 =t i(47)1 /2] and eigenvectors 

r8[l T i(47)'/2] 

Assume that, by some means, we obtain approximations 1.4991 :? 3.4271 i and 

[0.12490 ZF 0.85656 i 

for the eigenvalues and eigenvectors, respectively. Using these approximations, and 
implementing procedures in [8] in interval arithmetic, we find 

Xi E& XJ = [1.4978, 1.5021] + i[3.4253, 3.4301] . 

The details of how this bound was obtained need not concern us here. A full de- 
scription will appear elsewhere. Suffice it to say that the bound was obtained from 
the initial approximations by use of five-significant-digit interval arithmetic with 
double-precision (ten-digit) accumulation of scalar products. Computations de- 
scribed below were performed in the same manner. 

Using this bound with the approximations ,u = 1.4991 + 3.4271 i and 

=0.12490 - 0.85656 i] 

and substituting into (4.17), we find 

[[-0.50210, -0.49780] + i[-3.4301, -3.4253] -0.12490 T 0.85656 i] P 
L ~~~~~-4 -1 A 

_ [[0.0021456, 0.0021457] - i[0.00053567, 0.00053570]1 
0.0013 - 0.00086 i 

In general, this equation would be solved by a method described in [4] or [9]. 
However, for the simple case here, we can write down analytic expressions for the 
elements of Ap. Evaluating these expressions using interval arithmetic, we obtain 

105 [-10.025, -9.9755] +? [39.632, 39.734] 1 
1 P = L[-90.195, -89.798] + i[-72.823, -72.547]i- 

So far we have used five-digit arithmetic. As a last step we subtract Ap from p 
using double precision and obtain (after separating out X) 

X C [1.4999 9798, 1.5000 0195] + i[3.4278 2547, 3.4278 2823] 

and 

E[[0.12499 9755, 0.12500 025] + i[-0.85695 734, -0.85695 632]] 

Note that the left and right endpoints of the intervals bounding X and x agree to 
about six digits. The initial approximations were correct to only about three or 
four digits. The endpoints of the intervals in the initial bound on X agreed to about 
three digits. 
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5. Conclusion. In this paper, we have presented procedures and simple ex- 
amples for bounding solutions of nonlinear equations. In later papers, we shall 
present more complicated examples and discuss computational details. 

Note that in the examples used here, we obtained a posteriori bounds using 
approximations obtained by ordinary arithmetic. In the course of computing the 
bounds, we improved the approximations as well. In practice, we recommend the 
use of ordinary arithmetic as much as possible. Thus, the initial approximations 
should be accurately obtained to reduce the number of (slower) computations in 
interval arithmetic. 
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