
Distribution of the Figures 0 and 1 
in the Various Orders of Binary Representations 

of kth Powers of Integers 

By W. Gross and R. Vacca 

Leibniz' observation (in Mathematischen Schriften, edited by C. I. Gerhardt, 
Halle, v. 7, 1863, p. 235) of the periodic repetition of the figures 0 and 1 in the 
columns of tables formed by writing successively the binary representations of the 
values taken by polynomials in x of arbitrary degree when x is given all the values 
of the positive integers, prompted R. Vacca to carry out counts of the figures 0 and 
1 in the columns of tables formed by the kth powers of integers (with k an integer), 
which he did by means of appropriate programs for the FINAC electronic computer 
at Istituto Nazionale per le Applicazioni del Calcolo in Rome. Obviously in the 
order 20 the number of figures equal to 1 is equal to the number of figures equal to 0 
for any k. It was also observed that for h > 0 the number of figures equal to 1 in 
the order 2h is less than or equal to the number of figures equal to 0, that for increas- 
ing values of h the ratio between the number of figures equal to 1 and the total 
number of figures within a periodic sequence tends to the value 2 and that the value 
2 is reached periodically, in the table of kth powers, every k orders, or in all columns 
2h for which h is divisible by k and for k > 2. 

The "experimental" counts above referred to led to the formulation of the 
following theorem, the proof of which is due to W. Gross. 

THEOREM. Let us consider a generic natural number n in its binary representation 

n = EE(h, n)2, with E-(h, n) =O0orlI. 
0 

The binary representation of the kth power of n, with k a positive integer, is 
00 

kh n = Ek(h, n)2, with Ek(h, n) = or I 
0 

We observe first that 

Ek(h, n + 2h+1) = Ek(h, n) 

or, in other words, that Ek(h, n) is periodic with period 2 h+1 as a function of n, due to 
the fact that n _ m mod 2h+1 implies that nk =-mk mod 2h+1 (E(h, n), in fact, depends 
only on the residue of n mod 2h+1). We shall denote by Nk(h) the number of Ek(h, n) 
which are equal to 1 within a period, that is 

2h+1_1 

Nk(h) = E C-k(h, i) 
i=o 

The values of the ratio Nk(h)/2h+l (which is obviously equal to 2 for k = 1) can be 
listed as follows: 
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For lk = 2 

N2(h)/2h+l = 1 for h = 0, 
N2(h)/2h+l = (1 -2-s) for h > 0, with s = [h/2]. 

Fork > 2 

Nk(h)/21+l = - if k is a divisor of h, 
Nk(h)/2h+l = 2 (1 - 2-s) if k is not a divisor of h, 

where 

s=[(h+k)/k] if/X=0, 
s=[(h + k-,u-2)/k] if,u $0 , 

having denoted by ,u the maximum exponent such that 2M is a divisor of k. Obviously 
the statement that ,u = 0 implies that k is odd. We have denoted by [x] the integral 
part of x. 

Proof. Let us begin by introducing a function similar to Nk(h), but in which the 
sum is only extended to odd numbers: 

2h-1 

(1 ) PVk(h) = Ci:k (h, 2m + 1) 
m-O 

and let us express Nk(h) in terms of vk(h), We observe, in this context, that any 
number i included in the interval 0 ? i ? 2 h+ -1 may be written in the unique 
form 

i = 2r(2m + 1), 

with O ? m < 2h-r - 1; 0 < r < h, so that the sum Nk(h) may be written in the 
form 

h 2h-T-1 

(2) Nk(h) = , E Ck(h, 2r(2m + 1)). 
r=O0 m=O 

We observe now that 

ik = 2rk(2m + 1)k 

from which 

Ck(h, 2r(2m + 1)) = 0 for rk > h, 

whereas 

Ek(h, 2r(2m + 1)) = Ek(h - rk, (2m + 1)) forrk ? h . 

We may write therefore 

[h/k] 2h-r-1 

(3) Nk(h) = iE C-k(h-rk, 2m + 1), 
r=0 m=O 

while, in virtue of definition (1), we have 
2h-rk-1 

(4) Vk(h - rk) = E C:k(h - rk, 2m + 1). 
m=O 
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Due to the periodicity of Ek with respect to n, the internal sum of formula (3) has 
the value 

2h-r_1 

(5) E Ek(h - rk, 2m + 1) = 2r(k-i)Vk(h-rk) 

Substituting the value given by (5) into (3) we obtain 
[h/k] 

(6) Nk(h) = E 2r(k-)Vk(h - rk) 
r=o 

The problem is, therefore, reduced to the computation of vk(h). 
Let us observe now that Vk(O) = 1, so that in what follows we shall limit our- 

selves to the consideration of cases in which h > 0. Consider first the case of k odd 
and let us observe that, if x takes all the values of the odd numbers between 1 and 
2h+1 - 1, then xk takes the same values mod 2h+i. This is due to the fact that for x 
and y both odd 

xk yk mod 2h+1 

if and only if 

x y mod 2h+i 

which appears immediately obvious considering that 
k-1 

k k s k-i-s 
x -y = (X-y) ,x y 

s=O 

and that the summation on the right contains an odd number of odd terms and is, 
therefore, an odd number, which proves the assertion. 

Remembering that the e(h, n) depend only on the residue of n mod 2h+i and 
based on the observation above, we have that 

2h_1 2h-1 

E Ek(h, 2m + 1) = cE-(h, 2m + 1) 

or that 

(7) vk(h) = vi(h), 

and, as obviously 

vi(h) = 2hi 

the final result for k odd is 

Vk(h) = 2hi. 

Take now k = 2"p with p odd (where u is the number introduced in the statement 
of the theorem). We have xk = (xP)2' and xP for the reasons stated above takes 
mod 2h+i all the values of the odd numbers between 1 and 2h+1 - I while x varies 
between the same bounds, so that in this case we have 

2h-1 2h-1 

, Ek(h, 2m + 1) = X E2,(h, 2m + 1) 
m=0 m=0 

or 
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Vk(h) = v2A(h) . 

Formula (7) is a particular case, for,u = 0, of the above formula. We have, therefore, 
reduced the problem to the computation of Vk, where k is a power of 2. 

A well-known theorem of the theory of numbers states that for x odd we have 

(8) x2-= mod 2?+2 

which means that 2M powers of an odd number in the binary representation contain 
(,.u + 1) zeros on the left of the terminal 1. This entails that for 1 ? h < u + 1 we 
have v2A(h) = 0. 

Let us proceed now to the case in which h ? u + 2. Observe that the number of 
odd numbers between 1 and 2h+1 - 1 which satisfy (8) is 2h-1- and that half of 
them obviously has the value E(h, n) = 1. 

If we prove, therefore, that when x takes the values of the mentioned odd num- 
bers xk takes each value exactly 2M+? times, we will have shown that Vk(h) = 2h-1. 

In other words it is sufficient to prove that, for z odd, the congruence 

(9) x2 z2A mod 2h+1 

has exactly 2M+? solutions. 
We shall use a well-known representation theorem which states what follows. 

Any odd number may be represented mod 2h+1 in the unique form 

x_ (-1)W50 mod 2hl 
where a takes the values 0 and 1 and A takes those of a complete system of residues 
mod 2h1. 

Write, then, in virtue of this representation 

x = (-1)a55 mod 2h+1; z = (-1)a'5 O mod 2h+l 

Substituting in (9) we have 

52s: _52s' mod 2h?l 

and, because the representation is unique, this relationship is equivalent to 

(10) 2A3 2A3' mod 2h-1. 

The solutions of (10), as indicated by the general theory of congruences, coincide 
with those of 

(11) A-3' mod 2h-1 

Formula (10) is satisfied therefore by the 2M values of A which satisfy (11) 

A_' + k2-4 mod 2h with k = 0,1, * *, -1 . 

This number is doubled if we take into account the fact that a can take two values. 
We have proven, therefore, that 

V2A(h) = 2h-1 for h _,u + 2. 

Finally we have therefore 
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vk(h)=l forh=0, 
(12) Vk(h) = 2h-1 for k odd and h > 0 and for k = 2"p and h > ,A + 1, 

vk(h) = 0 for k = 2/p and 0 < h ? ,u + 1. 

In order to compute Nk(h) it is now sufficient to use (6) taking into account (12). 
Obviously we have Nk(0) = 1 and again we shall consider only cases for which 
h > 0. 

Let us now consider the various cases. 
(a) k odd; k is not a divisor of h. We have 

[h/k] [h/k] 

Nk(h) = ? 2r(k-1)2h-rk-1 = E 2h-1-r = 2 (1 - 2-[ ) 
r=O r=O 

(b) k odd; h is a multiple of k. We have 
h/k-i h/k-1 

2r(k-1)2h-rk-i h = r) Ih-l-r h-h/k h Nk(h) =) + 2(k)/ 2'~ + 2 =2 
r=O r=O 

(c) k even; h ? , + 1 (except the case k = 2, h = 2). We have obviously 

Nk(h) = 0. 

(d) k even; h > ,u + 1; k is not a divisor of h. We have 

[ (h-A-2) /k] 
rk hrk 

[ (h-A-2)lk 
h/k](, (+ -A2 k 

Nk(h) = E 2r(k1)2h2rk = 2 = 2h(1 - 2-[(h+k-M-2)/k]) 
r=O r=O 

(e) k even and different from 2; h > ,u + 1; k is a divisor of h. We have 
[ (h-M-2) /k] 

Nk(h) = > 2r(k-1)2h-rk-1 + 2h(k-1)/k = 2h(1 - 2-[(h+k-,u-2)/k]) + 2h-h/k 
r=O 

but in the conditions which apply to the present case we also have k > ,u + 2 which 
implies [(h + k - - 2)/k] = h/k so that Nk(h) = 2h. 

The only case left is now 
(f) k = 2; h even. We have, for h > 2 

h/2-2 h/2-2 

Nk(h) 2r2h-2r-1 + 2h/2 = E2h-1 r + 2 = 2 h(1 - h/2) 
r=O r=O 

whereas for h = 2 we have simply Nk(h) = 2 which coincides with the previous 
formula. 

The theorem is proved for k > 2 by the formulas of cases from (a) to (e), whereas 
for k = 2 it is proved by the formulas of cases (d) and (f), if we observe that for h 
odd and k = 2 we have 

[(h + k - -2)/k] = (h - 1)/2 = [h/2]. 
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