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An Explicit Sixth-Order Runge-Kutta Formula 

By H. A. Luther 

1. Introduction. The system of ordinary differential equations considered has 
the form 

(1) dy/dx = f(x, y), y(xo) = yo. 

Here y(x) and f(x, y) are vector-valued functions 

Y(X) = (yl(X), Y2(X), ' , Yam(X) ) 

f(X, Y) = (fl(X, Y), f2(X, Y), , * fm(X, Y)), 

so that we are dealing with m simultaneous first-order equations. 
For the fifth-order case, explicit Runge-Kutta formulas have been found whose 

remainder, while of order six when y is present in (1), does become of order seven 
when f is a function of x alone [3], [4]. This is due to the use of six functional sub- 
stitutions, a necessary feature when y occurs nontrivially [1]. 

A family of explicit sixth-order formulas has been described [1]. In this family 
is the formula given in the next section. Its remainder, while of order seven when 
y is present in (1), is of order eight when f is a function of x alone. Here again the 
possibility arises because seven functional substitutions are used, rather than six. 
Once more, this is a necessity [2]. 

For selected equations (those not strongly dependent on y) such formulas seem 
to lead to some increase in accuracy. 

2. Presentation of the Formula. For the interval [xn, xn + h], Lobatto quad- 
rature points leading to a remainder of order eight are 

xn, xn + h/2, x,, + (7 - (21)112)h/14, xn + (7 + (21)112)h/14, xn + h. 

A set of Runge-Kutta formulas related thereto is given below. They can be verified 
by substitution in the relations given by Butcher [1]. 

Expressed in a usual form they are 
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yn+, = Yn + {9k, + 64k3 + 49k5 + 49k6 + 9k7 }/180 
ki = hf(xn, yn) 

k2 = hf(xn + vh, y. + vk i) 
k3 = hf(xn + h/2, yn + {(4v - 1)ki + k2 }/(8v)) 

k4 = hf(x, + 2h/3, yn + {(10v - 2)ki + 2k2 + 8vk33}/(27v)) 

(2) k5 = hf(xn + (7 + (21)"12)h/14, yn + { -([77v - 56] + [17v -8](21)12)kl 
-8(7 + (21)"'2)k2 + 48(7 + (21)1"2)vk3 

- 3(21 + (21)1"2)vk4}/(392v)) 

k6 = hf(xn + (7 - (21)1 2)h/14, yn+ { -5([287v - 56] - [59v -8](21)1 /2)k, 
- 40(7 - (21)1"2)k2 + 320(21)1"2vk3 + 3(21 - 121(21)1"2)vk4 

+ 392(6 - (21)' 2)vk5}/(1960v)) 

k7 = hf(xn + h, yn + {15([30v - 8] - [7v(21)1"2])kl + 120k2 
- 40(5 + 7(21)1"2)vk3 + 63(2 + 3(21)112)vk4 

- 14(49 - 9(21)1"2)vk5 + 70(7 + (21)1"2)vk6}/(180v)). 

If desired, a companion formula can be found by replacing (21)1/2 throughout with 
- (21)1/2. The parameter v may have any value other than zero. 

3. A Choice of Parameter. In some senses, a "best" formula is one for which 
each coefficient of ki in expressions such as 

f(xn + h/2, yn + {(4v - 1)ki + k2}/(8v)) 
is positive or zero. If this is impossible, we may seek to minimize the sum of the 
absolute values of the coefficients. To establish a figure of merit, this sum should 
be divided by the weight 1/2 in xn + h/2. In this connection see, for example, 
[5, p. 146]. The resulting expression for the above, assuming v > 0, is 

1/(4v) + 11 - 1/(4v)I . 

This is clearly nonincreasing, and is a minimum of 1 for v > 1/4. 
The other components of (2) behave in like manner except for that involving 

k7, which is of the form a/v + b, where a and b are positive constants. Except for 
this component, the minimum is achieved for all if v > 4(55 + 9(21)1/2)/331 > 1. 

If the same tactics are applied to the formula resulting when -(21)1/2 is used 
rather than (21)' /2, it develops that all components are minimized if v > 1/4 ex- 

cept that pertaining to k5, which is of the form a/v + b, a and b positive.* 
To determine whether to use the formula pertaining to (21)1 /2, as in (2), or that 

formed therefrom by replacing (21)1/2 by - (21)1 /2, we need the actual minima. For 
(21)1/2, in the order k2, k3, k4, k5, k6, k7, they are 

1, 1, 1, 17/7, (232 + 33(21)1/2)/35, 4/(3v) + (526 + 259(21)1/2)/90. 

For - (21)1/2, in the same order, they are 

1, 1, 1, 4/(7v) + (55 + 3(21)1/2)/28, (41(21)1/2 - 13)/28, (130 + 63(21)1/2)/18. 

Since one is ideal, a comparison shows (the fundamental weights for yn+i are also 
to be considered) that - (21)1 /2 is to be preferred, and that, if we desire 0 < v ? 1, 
the value of v should be one. The resulting ki formulas are 

* The author is indebted to the referee for pointing out that the sign of the surd might be 
used to advantage. 
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k, = hf(xn, yn) 

k2 = hf(xn + h, yn + ki) 
k3 = hf(xn + h/2, Yn + {3k, + k2}/8) 
k4 = hf(xn + 2h/3, yn + {8ki + 2k2 + 8k3 }/27) 

(3) k5 = hf(xn + (7 - (21)"12)h/14, Yn + {3(3(21)1/2 - 7)ki - 8(7 - (21)1/2)k2 

+ 48(7 - (21)1 "2)k3 - 3(21- (21)1 "2)k4 }/392) 

k6 = hf(xn + (7 + (21)112)h/14, yn + { -5(231 + 51(21)1"2)ki 
- 40(7 + (21)1"2)k2- 320(21)1"2k3 + 3(21 + 121(21)1"2)k4 

+ 392(6 + (21)1 2)k5}/1960) 

1b7 = hf(xn + h, yn + {15(22 + 7(21)1"2)ki + 120k2 

+ 40(7(21)1/2 - 5)k3- 63(3(21)1/2 - 2)k4 
- 14(49 + 9(21)1"2)k5 + 70(7 - (21)1"2)k6}/180). 
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