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An Explicit Sixth-Order Runge-Kutta Formula

By H. A. Luther

1. Introduction. The system of ordinary differential equations considered has
the form

(1) dy/dr = f(z,y),  y(@o) = Yo.
Here y(x) and f(z, y) are vector-valued functions
y(@) = W1(2), y2(2), - - -, yn(2)) ,
f(xr Z/) = (fl(z; y)yf2(x’ y); c ':fm(x, y)) )

so that we are dealing with m simultaneous first-order equations.

For the fifth-order case, explicit Runge-Kutta formulas have been found whose
remainder, while of order six when y is present in (1), does become of order seven
when f is a function of z alone [3], [4]. This is due to the use of six functional sub-
stitutions, a necessary feature when y occurs nontrivially [1].

A family of explicit sixth-order formulas has been described [1]. In this family
is the formula given in the next section. Its remainder, while of order seven when
y is present in (1), is of order eight when f is a function of z alone. Here again the
possibility arises because seven functional substitutions are used, rather than six.
Once more, this is a necessity [2].

For selected equations (those not strongly dependent on y) such formulas seem
to lead to some increase in accuracy.

2. Presentation of the Formula. For the interval [z,, ., + h], Lobatto quad-
rature points leading to a remainder of order eight are
T, Zn + h/2, Zn + (7T — (21)12)h/14, 2o + (7 4 (21)12)h/14, Zn + h.

A set of Runge-Kutta formulas related thereto is given below. They can be verified
by substitution in the relations given by Butcher [1].
Expressed in a usual form they are
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Yur1 = Yo + {91 + 64ks + 49%s + 49%ks + 9k-}/180
ki = hf(@n, Yn)
kz = hf(xn + Vh, Yn + V]Cl)
ks = hf(xa + h/2, yu + {(4v — Dko1 + k2}/(8v))
ks = hf(x + 21/3, yo 4+ {(10v — 2)k1 + 2ks + 8vks}/(27v))
@) ks =M + (7T + @D'™)A/14, yu + {—=([(77v — 56] + [17» — 8](21)!/2)k,
— 8(7 + (21)') ks + 48(7 + (21)12)vks
— 3(21 + (21)')vk4}/(392))
ke = hf(xa + (7 — 21)'™)h/14, yot { —5([287y — 56] — [59 — 8](21)! )k
— 40(7 — Q1)')ks + 320(21) ks + 3(21 — 121(21)2) vk,
4 392(6 — (21)12)vks5}/(1960v))
k1 = hf(xa + b, yu + {15([30v — 8] — [7»(21)'*])k1 + 120k,
— 40(5 + 7(21)12)vks 4+ 63(2 + 3(21)12)wk,
— 14(49 — 9 1) 2)wks + 70(7 4+ (21)12)vks}/(180v)).
If desired, a companion formula can be found by replacing (21)!”2 throughout with
—(21)'2, The parameter » may have any value other than zero.

3. A Choice of Parameter. In some senses, a ‘“best” formula is one for which
each coefficient of k; in expressions such as

is positive or zero. If this is impossible, we may seek to minimize the sum of the
absolute values of the coefficients. To establish a figure of merit, this sum should
be divided by the weight 1/2 in x, + h/2. In this connection see, for example,
[5, p. 146]. The resulting expression for the above, assuming » > 0, is

/() + (1 — 1/(40)] .
This is clearly nonincreasing, and is a minimum of 1 for » = 1/4.

The other components of (2) behave in like manner except for that involving
k+, which is of the form a/v + b, where a and b are positive constants. Except for
this component, the minimum is achieved for all if » = 4(55 + 9(21)1/2)/331 > 1.

If the same tactics are applied to the formula resulting when —(21)!2 is used
rather than (21)'2 it develops that all components are minimized if » = 1/4 ex-
cept that pertaining to ks, which is of the form a/v + b, @ and b positive.*

To determine whether to use the formula pertaining to (21)!2) as in (2), or that
formed therefrom by replacing (21)!2 by —(21)!”2, we need the actual minima. For
(21)'2, in the order ks, ks, k4, ks, ke, k7, they are

1,1, 1, 17/7, (232 4+ 33(21)'%)/35, 4/(3v) + (526 + 259(21)1/2)/90 .
For —(21)2) in the same order, they are
1, 1,1,4/(7Tv) + (55 + 3(21)12)/28, (41(21)'? — 13)/28, (130 + 63(21)'2)/18 .

Since one is ideal, a comparison shows (the fundamental weights for y,,1 are also
to be considered) that —(21)!”2 is to be preferred, and that, if we desire 0 < » < 1,
the value of » should be one. The resulting k&, formulas are

* The author is indebted to the referee for pointing out that the sign of the surd might be
used to advantage.
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kv = hf(xn, Yn)
ky = hf(@n + R, yn + k1)
ks = hf(xa 4+ 1/2, Yo + {3k1 + k2}/8)
ks = hf(@n + 2h/3, yn + {8k1 + 2k, + 8k3}/27)
3) ks = hf(w + (7 — CQDIA/14, yo + {33212 — Nk — 8(7 — (21)12)k.
+ 48(7 — (21)1)k; — 3(21 — (21)12)k,}/392)
= hf(xn + (7 + 21D)')A/14, y» + {—5(231 + 51(21)'H)ks
— 40(7 4+ (211 ky — 320(21)12%; 4+ 3(21 + 121(21)12)k,
+ 392(6 + (21)!"2)k5}/1960)
k1 = hf(@a + b, 4 + {15(22 + 7(21)12)k; 4 120k,
+ 40(7(2D)1"2 — 5)ks — 63(3(21)12 — 2)k,4
— 14(49 4 9(21)12) k5 4 70(7 — (21)12)k4}/180).
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