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1. In [4] the author described a method of evaluating the modified Bessel func- 
tion of the second kind, Kn(z), based on approximating by the trapezoidal rule the 
integral representation 

V\lrez' f0 t2 2n t2 )n-1/2 (1) K )(z2)= e (2z)n e + t (2z ) dt, 

([4, Eq. (5)]). Here z is a general complex number: 

(2) z = x + iy = pei@. 

In the present paper we consider a number of other functions which can be evalu- 
ated similarly. 

We shall express the functions in terms of the integral 
fcc r 

(3) eGr(m;n, Xi; n2, X2; .;nr, Xr; Z) = J 2et2t2m r1 (X3z+ t2)nidt 
0 j=i 

Here the exponents m, nli, n2, .. *7r are real, with m > - 2, and, in the examples 
we shall consider, the parameters X1, X2, . . ., Xr are real and positive. Under those 
circumstances the integral (3) will converge provided p > 0 and 101 < 'r, the last 
condition being imposed to avoid possible singularities of the integrand on the 
positive real axis. In some cases (3) will also converge when p = 0. In general, for 
brevity, we shall denote this function by Gr(m; n, X; z). 

The following alternative expression is easily derived: 

G ( X ) m~+n+1/2 | 2-t2m I e +t2)nidt (4) Gr(M; n, X; z) = pm??/ f2e-ttm [H (Xje"0 ? +~d 
0 j=i 

where 

(5) n = nl +?n2 + ? ** +nr 

Again, this expression is valid provided p > 0 and 11 < 7r. 

2. Examples. Before considering the numerical evaluation of Gr(m; n, X; z), we 
list a number of special functions which can be expressed in terms of it. Some of 
the examples are, of course, related. 

(i) The gamma function, r(a). 

(6) r(a) = Go(a-1; z). 

This is, of course, independent of z. 
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(ii) The incomplete gamma function, r (a, z) f j0ta-le-tdt. 

-2 a 
=e-za 

rr z -a) G1Q - a; -;-1,1; z) if R (a) <1 

(cf. Luke [6, 7.3(3)]). 
(iii) The complementary error function, erfe (z) = (2/ '1 ir) J'et2dt. 

(8) erfe (z) = (z/r)e_z2G(0; -1,1; Z2) 

(see Fettis [2, ? 4]). 
(iv) Kummer's confluent hypergeometric function, U(a, b, z). 

(9) U(a,b, z) = blGl(a - ;b-a-- ,1;z), (9) r ~~~~~(a)z?1~ 
(cf. Abramowitz and Stegun [1, 13.2.5]). 

(v) The modified Bessel function, K&(z). 

(10) Kn(Z) 
= \Vlre-z G, (n; n - 

,2; z) 
F(n + 1)(2z)' 

2) 

(see (1)). 
(vi) The integral 'e-PuumK,(Xu)du, (m, n integers, with m + n > 0, X + p> 0), 

-cf. Luke [6, Chapters IV, V]. 

rX f euKnu)du 

(11) ,X,/Vzm-n+le-(p+X)z m+n (m + n)! 

(2X)nrn + l Eo r! G2(n;n82 2X;r rm-n-I X + p; z). (2X)rF(n ? 1) r=O 

In particular, 

(12) fe -Kn(u)d V2ne( G2(n;n 1- ,2X; -1,X+p;z). 

A number of special cases of interest arise on giving particular values to the 
parameters. For example, when p = 0, X = 1, we have functions similar to some 
of those considered in Luke [6, Chapter II]. Also, putting m = n = 0, p = 1, 
z =-- ?iy, we obtain integrals of the Schwarz type,-cf. Luke [6, Chapter X]. 
This example was suggested to the author by the referee. 

(vii) Repeated integrals of Ko(z). In the notation of Abramowitz and Stegun 
[1, Chapter 11], let Kio(z) = Ko(z), while for n > 1 

Kin (z) = Kin-, (u)duv 

Then 

(13) Kin(z) = zne-zG2(0; -n, 1; -2,2; z) 

Similar but more complicated expressions exist for repeated integrals of 
e-P2zmKn(Xz). 
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3. Evaluation of Gr(m; n, X; z). For the remainder of this paper we shall assume 
that m is a nonnegative integer, so that the integrands in (3) and (4) are even 
functions of t. In this case it is known (see, e.g., Goodwin [3]) that the integrals 
can be approximated very closely by the trapezoidal rule, or by Luke's modified 
form of it, [5]. For simplicity, we shall consider the standard trapezoidal rule. 

Suppose F(w) is an even, analytic function of a complex variable w, and that 
f o2F(t)dt converges. If we now write the trapezoidal rule with interval h in the 
form 

rX rX 00 1 
(14) f 2F (t)dt F (t)dt = h F (O) + 2 j F (rh) -E (h) o~~~~ oo r=l 
it is easy to show, by integrating F(w)/(1 - e-27wIh) round a rectangular contour 
r with vertices at i oo i ia, that 

(15) E (h) = 2e2 -h f e -27ra/hF(t -2ia)dt 

The reasoning is similar to that of Goodwin [3]. Here a is any real number such 
that r contains no singularities of F(w). It follows that 

_27 ra/h feo 
(16) IE(h) < I F(t - ia)Idt, 

e-e -00 

and this inequality holds also for Luke's modified trapezoidal rule. 
We are interested in integrands of the form 

F(t) = e t2t2 f (Xjz + t2)p' 

or 
r 

F(t) = e-P 2t2 H1: (e je + t2) 
j=1 

For clarity, we shall denote by El(h) and E2(h) respectively the errors in evaluat- 
ing integrals of those two types by the trapezoidal rule. Thus letting 

) _ a_ -h 2ira/h 
(17) g(a, h, p) - 2ea(Pa2/h)/(1 e- ) 
it follows from (16) that 

foo r 
(18) El (h)l < g(a, h, 1) f et-2t - ia2m II XjZ + (t - ia)21nidt 

-00 j= 

while 

rO0 r 
(19) IE2(h)1 _ g(a, h, p) f IPt - ia2m IJ 1A,et + (t - ia)21d 

-oo j=1 

If we denote by A the smallest of the parameters Xj for which nj is not a positive 
integer, the constant a in (18) and (19) is subject to the restriction 

(20) a < (Ap)1/2 cos 0/2 in (18) 

< ,u cos 0/2 in (19) . 
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It remains to obtain upper bounds for the errors. Consider, first, E1. It is con- 
venient to arrange the factors in the integrand in (3) so that the first p, say, of 
the exponents nj are positive, the rest being negative. If we now denote by X the 
largest of the parameters Xi, X2, *, Xp, it is easy to show that 

p 

(21) 11 Xjz + (t - ia)21ni (vI){ (Xp + a2)v + t2v} 
jclj 

where 

(22) v = ni + n2 + + np 

and 

(23) 4(v) =1 if v<1, 

-2'-l if v > 1. 

For j > p, we have 

XjZ + (t _ ia)21 > (1/\/2)[IXjx + t2 - a2j + lXy - 2atI] 

Denoting by gij(a, z) the minimum value of the expression on the right as t varies, 
it can be shown that Iij(a, z) is the smallest of the quantities 

(1/ AX2)Xj(lxj + IyI - 2a21), (1/ V 2)1Xjx + (Xjy/2a)2 - a21, 

and, if Xjx a2, 

(1/ /2)jXjXyj -2a(a 2 - jX)12 

Now, setting 
r 

(24) Au(a,z) = [I [,uj(a,z)Y'i, 
j=p+j 

we deduce from (18) that 

IEl(h)l ? g(a, h, 1) f 4(m)p(v) A(a, z)e-t2 (a2m + t2m)[(Xp + a2)v + t2v]dt 

i.e., 

El (h) I _ g (a, h, 1) ) (m)+0 (v) A (a, z) 

(25) X {a2m'(Xp + a2)vr(,) + (Xp + a2)Tr(M + 1) 2 
22 

+ 2a + )+ p(m + V +)} 

Similarly, 

|E2 (h) I _ g (a, h, p)o (m)o) (v),u (a, et@) 

(26) X {a2m (X + a2)vp(1)/pl12 + (X + a 2)(m + 1)/Pm+/2 

+ a2mr(v + I)/pV+l/2 + r(m + v + 1)/m+v+1/2} 

A few general comments can be made. Consider, first, El(h). The most rapidly- 
varying factor on the right in (25) is ea(a-2r lh), and this has its minimum value, 
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exp [--xr2/h2] when a = 7r/h. This is therefore a convenient value to use, provided 
it does not violate the condition (20), that is, provided p is not too small. This, in 
turn, suggests that the method is most suitable for large values of p. However, 
even when p is fairly small, good accuracy can often be obtained; for example, it 
was shown in [41 that Ko(2) can be estimated in this way, using an interval h =2, 

with a relative error of order 10-9. 
The discussion of E2(h) is less clear-cut. The factor ea(pa-271h) in (17) has its 

minimum value, exp [- r2/ph2], when a = r/ph. Since this value increases with p, 
progressively smaller values of h must be used as p increases in order to maintain 
accuracy. This disadvantage is largely off-set, however, by the rapid convergence 
of the integral in (4) for large p. If p < 1, on the other hand, the value a = -r/hp 
is likely to violate the restriction (20). However, this affects (19) less than (18), 
and so we expect greater accuracy, for a given value of h, from (4) for small p. 
Unfortunately, as p -* 0, the rate of convergence of the integral in (4) decreases 
considerably, and neither form is really suitable for very small values of p. 

The actual numerical estimation of the error from (18) or (19) is rather tedious, 
and, since the bounds obtained are, in any case, rather conservative, it may be 
preferable to establish the error in an actual example by numerical experiment. 
As an example, we shall estimate the error in calculating f-t-'Ki(t)dt for small, 
real x, using (4). From (12), 

00 e~~-x 
J F'K1(t)dt = G 2(1; 12 2; -1, 1; x) 

x x 

Thus X = 2, v = 2, +(V) = 1. Also, it can be shown that A (a, 1) = 2/1l - a2. 
Thus 

[E2(h)I _ 2V/2e a(xa-2/h) 7r(a2 + 2) 122 1 2 1 (1h I< - a 2) (I -_2,ra/h ) (a +y)x+?(a + 

where, from (20), a < 1. 
If, for example, h = 4, the minimum of the right-hand side occurs near a = 0.96, 

for small x. Using this value, we get, e.g., 
whenx = 1, E21 < 1.9 X 10-8, 
when x = 0.5, fE21 ? 2.7 X 10-8. 

The actual errors for those two values of x were found, by numerical experiment, 
to be about 2 X 10-10 and 4 X 10-11 respectively. 

School of Mlathematics, 
University of Bradford, 
Bradford 7, Yorkshire, England 

1. M. ABRAMOWITZ & I. A. STEGUN (Editors), Handbook of Mathematical Functions, with 
Formulas, Graphs, and Mathematical Tables, Dover, New York, 1966. 

2. H. E. FETTIS, "Numerical calculation of certain definite integrals by Poisson's summation 
formula," MTAC, v. 9, 1955, pp. 85-92. MR 17, 302. 

3. E. T. GOODWIN, "The evaluation of integrals of the form fr, e-xf(x)dx," Proc. Cambridge 
Philos. Soc., v. 45, 1949, pp. 241-245. MR 10, 575. 

4. D. B. HUNTER, "The calculation of certain Bessel functions," Math. Comp., v. 18, 1964, 
pp. 123-128. MR 28 #1330. 

5. Y. L. LUKE, "Simple formulas for the evaluation of some higher transcendental functions," 
J. Math. Phys., v. 34, 1956, pp. 298-307. MR 17, 1138. 

6. Y. L. LUKE, Integrals of Bessel Functions, McGraw-Hill, New York, 1962. MR 25 #5198. 


