
On Difference Schemes for Hyperbolic Equations 
with Discontinuous Initial Values 

By Mats Y. T. Apelkrans 

1. Introduction. In this paper we consider the hyperbolic equation 

au au 
(1.1) =t =ptxt) d~z=( +O c(x, t)u with initial values 

u(x, O) = f(x) 
in the upper halfplane. It is well known that if f(x) is a sufficiently smooth function 
(1.1) can be closely approximated by stable difference schemes, and very realistic 
error bounds are given in a number of papers (see, e.g., Lax [6]). But in applications 
there often arise initial functions, with simple discontinuities or discontinuities in 
the higher derivatives. A discontinuity in f(x) propagates in the solution to (1.1) 
along a characteristic, but this propagation is disturbed in the solution of the corre- 
sponding difference equation. It is the aim of this paper to give rather sharp bounds 
for the error and to show how these bounds depend on the order of accuracy and 
dissipation of the difference scheme at hand. 

We show that the error between the solutions of (1.1) and the corresponding 
difference approximation has two components El and E2, where El = O(hP), p is 
the order of accuracy. The other component E2 = O(e-a), where a = Nqd(x, t) with 
0 < q < 1. Here d(x, t) is the distance (cf. Section 2) from the characteristic to 
(1.1) through the jump-point. h = N-1 is the mesh-size and q depends on p and the 
order of dissipation. Furthermore, for constant coefficients we can take El 0. In 
Section 2 we list a number of results. The first one shows that if p is odd, then a 
dissipative scheme is necessarily dissipative of order p + 1. But for even p, the 
dissipative schemes with largest q are those with dissipation of order p + 2. In 
Section 5, where we list the results of a number of numerical experiments, Experi- 
ment 9 shows that a nondissipative scheme can behave very badly; e.g., if p = 1, 
4)0 and N = 200, then the error for t = 1, is bigger than 0.01 in an interval of 
length 2. 

The main idea of this paper, due to H.-O. Kreiss, is to extend the real variable t 
to the complex variable t + ia in the symbol Q(t) of the difference operator at hand. 
This technique is also used in a paper of H.-O. Kreiss and E. Lundqvist [5], where 
they consider a mixed problem for a hyperbolic equation. 

The main part of our proofs, collected in Section 3, consists of algebraic manipu- 
lations of the transformed symbol Q(Q + ia), which lead to the definition of con- 
tractivity (Definition 2.4). Contraction can be considered as an algebraic condition 
on the difference scheme. Now, Q( + ia) is the symbol of a difference operator that 
originates from an equation obtained by a simple transformation of the original 
difference equation. This fact is used in Section 4, where the rest of the proofs are 
found. For the variable coefficients case, we also use a theorem of Lax-Nirenberg 
[7]. 
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In a forthcoming paper we intend to generalize our results to symmetric hyper- 
bolic systems with variable coefficients. 

There are some earlier results which ought to be mentioned. First, H.-O. Kreiss 
[4] has shown that the same relation between p and the order of dissipation 2s = p 
+ 1 or 2s = p + 2 guarantees L.R.-stability for difference approximations to 
hyperbolic systems in any number of independent variables. (L.R.-stable means 
stable in the sense of Lax and Richtmyer.) B. Parlett has also discussed stability of 
dissipative schemes in [81, with the same relations between p and 2s. We should also 
mention papers of V. Thom~e [11], J. Peetr6 and V. Thom~e [9], G. Hedstr6m [3] 
and R. P. Fedorenko [2], which consider problems with discontinuous initial func- 
tions. 

In [11] V. Thomee has proved a theorem like ours, but in his proof he uses a 
quite different technique containing Fourier-Stieltjes transforms of functions of 
bounded variation. His results are restricted to difference operators, which are 
stable in maximum-norm. But many of the difference schemes used in practice do 
not belong to this class; e.g., every scheme with even order of accuracy. Further- 
more, nothing is said about equations with variable coefficients. 

In [9], J. Peetr6 and V. Thom~e give estimates for the rate of convergence of a 
very general class of difference schemes. They use for their proof the theory of 
interpolation of Banach spaces. In our special case they give an L2-estimate of the 
error of order ha, where a = ip/(p + 1). These estimates are better than the 
corresponding L2-estimates using our results. However, an L2-estimate in the 
problem of this paper gives quite misleading information, because the local error 
outside an interval of length O(hqllog hi) is only of O(hP). 

In [3] G. W. Hedstr6m gives an estimate for the constant coefficient case. His 
results give E1 = O(hP) and E2 = O(e-a), where a = const N d(x, t)(P+1)1P for 
d(x, t) ? const N-P (P+1). These results are therefore more precise* in this part of 
the x-axis, but are less general. In his proof he uses estimates of the norms of powers 
of absolutely convergent Fourier series. Generalizations to variable coefficients can 
hardly be treated with this method. 

Finally, R. P. Fedorenko [2] describes a method that gives very good numerical 
results in a number of tested examples. The paper is of experimental character and 
contains no proofs. He starts with a high order method, say p = 3, but when he 
comes to the discontinuity he changes the method to p = 1 in order to avoid the 
parasitic waves, "the Gibbs phenomenon," and afterwards, when the danger is over, 
he again takes the first method with p = 3. In order that the computer should 
recognize the discontinuities, he lets it compare the second and first differences in 
every mesh-point. This works well for simple examples like au/at = au/ax, but to 
generalize to more complicated equations without this a priori knowledge about the 
characteristics seems to be hard. 

Acknowledgements. I should like to thank my teacher H.-O. Kreiss who proposed 
this problem to me and who guided me in a very unselfish way. I am also very grate- 
ful to 0. Widlund, who has read the manuscript and given me many valuable com- 
ments. 

I am very indebted to James M. Varah, who made my English understandable 
and suggested some improvements. 

* Compare Experiment 7 in Section 5. 
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2. Preliminaries and Statement of Results. Consider the hyperbolic equation 

(2.1) au Ix, t)x, t) -y - d (x, t) + +(x, t)u(x, t), 

where p and 4 are real valued functions, - 0o < x < oo and t _ 0. Its (generalized) 
solution is uniquely determined by initial values 

(2.2) u(x, 0) = f(x). 

We want to study the behavior of difference approximations to this problem. 
We therefore introduce a time-step k > 0, a mesh-width h, and grid-points xv = Mh, 
V = O. =i1, =i2, ** E . Furthermore let k/h = X, X > 0 constant. Denoting by v,(t) 
= v(x,, t) a function defined for all t = t= nk, n = 0, 1, 2, * we approximate 
(2.1), (2.2) either by 

(2.3) Qlv,(t + k) = Q2v,(t) 

or by 

(2.3') v,(t + k) = Qov^(t) 

with initial conditions in either case 

(2.4) v'(O) = f(X)v 

Qj, j = 0, 1, 2 are difference operators of the form 
m 

Q1(x, t, h) = A bj(x, t, h)Ej, 
j=- 

m 

Q2(x, t, h) = A aj(x, t, h)Ej 

and 

Qo(x; t, h) = A dj(x, t, h)Ej 
j=-X 

respectively, where E is the translation operator defined by 

Egq = gq+l. 

We always assume that aj, bj and di are smooth functions of h. To get an algebraic 
description of the behavior of the solution of (2.3) or (2.3') we introduce the symbols 

Qj(x, t, i, h) = e-ixQjeiwx, j = 0 1, 2 

We always assume that for the implicit scheme (2.3) 

1 Q_1(x, ty A, h) I > const 

for all x, t, t and for sufficiently small h. 
To be complete, we have assumed h-dependent coefficients in (2.3) and (2.3'), 

but the essential features of a difference scheme come from the principal part of 
the difference operator, i.e. when h = 0. From the assumption above, we see that 
Ql-'(x, t, 0) is a bounded operator in L2 and hence 
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Q-,(X, t, y, 0) = Qr'(x, t, X , O)Q2(x, t, i, 0) 

is well defined. 
Furthermore, we define the solution operator S of (2.3)-(2.4) or (2.3')-(2.4) by 

v,(t) = S(t, h)f(x,) 

We also introduce a discrete L2-norm H 11h by the scalar-product 

f, 9) h= E hfgv, g |hifiK= f, f)h, 

where f and g are mesh-functions. 
Some definitions are now in order. 
Definition 2.1. The difference scheme (2.3) or (2.3') is stable if the operator 

S(t, h) is uniformly bounded in L2 for 0 < t < T. independent of h. 
Definition 2.2. The difference scheme (2.3) or (2.3') is accurate of order p, (con- 

sistent if p _ 1), if p is the largest integer such that for all sufficiently differentiable 
solutions u(x, t) of (2.1) 

u(x, t + k) = Qi(x, t, h)u(xr, t) + 0(hP+I) , h-- O. i = O. -I 

It is well known that a scheme (2.3) or (2.3') which is accurate of order p satisfies 

(2.5) Qj(x, t, {, 0) = eiP(x t)X + cO(x, t)#P+'(1 + o(1)) , 0 >O0 

(cf. Lax [6]), j = 0, -1. 
Definition 2.3. A difference scheme defined by the operator Q(x, t, h) is dissipative 

of order 2s if s is the least integer such that for all x and t, and for all t with -< 7, 

Q(x, t,{,O)j -< 1 - 6%2. 

6 > 0 some constant. 
We now introduce another algebraic condition in terms of which we will state 

our main theorems. 
Definition 2.4. Let a be a real constant. A difference scheme defined by the 

operator Q(x, t, h) is contractive of order r = (Tr, T+) if there is a uniformly bounded 
function o-(x, t), independent of {, such that, for a sufficiently small, 

Q(x, t, t + ia, 0) = exp (-aXp(x, t) + u(x, t)laIT) .R(x, t, 7), J4 < 7r, 

with r = r- for ap < 0 and r = T+ for ap > 0 and where R(x, t, t) is such that 
R1 < 1 for all x and t, and for all t with 121 - r. 

Let r = 2s - p; then it is easy to see that there are no dissipative difference 
schemes with r < 0 and the following theorem says that for odd p we can only have 
r = 1. 

THEOREM 2.1. A dissipative difference scheme of odd order of accuracy p is dissipa- 
tive of order p + 1. 

But for even order of accuracy p, we can construct schemes with r = 2j, j = 1, 
2, * - .. (Section 5, Experiment 11 gives an example.) 

There are connections between r, p and s for a given scheme, which we are going 
to describe in the next theorem. 

THEOREM 2.2. Suppose that the difference scheme (2.3) or (2.3') is 
(i) accurate of order p, 
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(ii) dissipative of order 2s, and that 
(iii) p(x, t) is uniformly bounded and does not change sign; then, for p = 2j - 1, 

j = 1, 2, **, it is contractive of order r = (p + 1, p + 1). Moreover, for p = 2j, 
j 1, 2, I .,if 

(iv) ico(x, t)p(x, t) > 0 
is satisfied, then it is contractive of order T = (6s/(r + 2), 2s/r). (co(x, t) was defined in 
(2.5).) 

We believe condition (iv) is satisfied for all schemes used in practice. It is satis- 
fied for explicit schemes (2.3) of maximum accuracy. (Cf. Strang [10] and our report 
[1].) 

THEOREM 2.3. Consider the difference scheme (2.3) with Q, = I (identity operator) 
and Q2 = jLN ajEj of maximum accuracy, i.e., p = 2N. For these difference 
schemes condition (iv) of Theorem 2.2 is satisfied, if IpXI < 1. 

The proofs of these three theorems will be given in Section 3. They are purely 
algebraic in nature. The next three theorems have analytical proofs, which are 
presented in Section 4. 

In this paper we only consider initial functions f(x), which are step-functions 

(2.6) f(x)=0 x<0 
-1 x>0. 

More general discontinuous initial functions could be divided into a sum of a 
smooth function and step-functions, which are handled in our original report [1]. 
That this works is essentially dueto thBelinearrcharaeterof-iurFro-bem. For smooth 
initial functions we can refer to [6]. 

The error estimates in Theorems 2.4-2.5 show that the influence to the error 
from the discontinuity-jump is exponentially decreasing with the distance d(x, t) 
from the characteristic through the origin. 

Definition 2.5. The distance d(x, t) from the characteristic through the origin is 
given by d (x, t) = g(x, t) , where g(x, t) satisfies Og/Ot = p(x, t)Og/Ox with g(x, 0) 

. 
We first study the constant coefficient case. Then d(x, t) = Jpt + xJ. It is no 

restriction to assume thatO = 0 in (2.1). Furthermore, let T+1 denote the region in 
the (x, t)-plane, where 0 < t < T and where (x, t) lies to the right of the character- 
istic of (2.1) through the origin. T-1 is the corresponding region to the left of the 
same characteristic. 

THEOREM 2.4. Let p $ 0 be a constant and let 4 0. Consider the difference scheme 
(2.3) with coefficients independent of x, t and h, and let f(x) be defined by (2.6). Suppose 
that 

(i) (2.3) is consistent with (2.1), 
(ii) (2.3) is contractive of order r = (T, r+). Then for h sufficiently small, 

(2.7) lu(x,, t) - v,(t)l < ch(q-l)'2 exp (-h-lpt + xj), 

where c is a constant. Here q = (r7 - 1)/rT, with minus sign in T, ign(p) and plus sign 
in T+sign(p). 

We now turn to the variable coefficient case, and in order to be able to use a 
stability theorem of Lax and Nirenberg (see [7] and Section 4) we choose the scheme 
(2.3'). This theorem also needs some smoothness properties on the coefficients dj in 
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(2.3'). To simplify our proof, we assume that p(x, t) and 4(x, t) have compact sup- 
port. Here 11 * 11 means the ordinary L2-norm. 

THEOREM 2.5. Consider the difference scheme (2.3') with initial values defined by 
(2.6). Suppose that 

(i) (2.3') is accurate of order p, 
(ii) (2.3') is contractive of order r = (r-, r+), 
(iii) p(x, t) and ck(x, t) E co',** and p(x, t) does not change sign. 

Lmax11dj(d,(ttO)HI I |ax dj(a ,tTO) I 2d (a,t,O0) }-const 
(iv) , 

Z 1dj(. ,tO ) I l(1 + j2) _ const for all t . 

Then, for h sufficiently small, 

(2.8) 1u(xX, t) - v (t)I _ c1hV + c2D(x^, t) in T1, 
< c3D(x,, t) in T1, 

where 

D(x, t) = h(Q-1) 2 exp (-hQd (x, t)) 
and where ci are constants independent of x, t and h. Here q = (rT - 1)/rT, with minus 
sign in Tsign (p) and plus sign in T+sign (p). 

Remarks. The assumption, that p E co' simplifies the proof a lot, but it will of 
course work even for more general coefficients, which are sufficiently smooth. 
Furthermore, by modifying the proof of a stability theorem of Kreiss [4], it certainly 
will be possible to prove an analogous theorem for the scheme (2.3), with the follow- 
ing assumptions: (1) the coefficients in the scheme are Lipschitz continuous, and (2) 
2s = p + 2 - 1, 1 = 0, 1. 

Note that the q's of Theorem 2.4-2.5 satisfy 0 < q < 1. Furthermore the best 
q's for dissipative schemes with even order of accuracy are obtained for schemes with 
r = 2. Then 

q = p/(p + 2) in T+sign(p) I 
= (3p + 2)/(3p + 6) in T-sign(p) . 

Example. The Lax-Wendroff scheme Q _I, Q2 = I + pkDo + Up2(k2/2)D+D, 
where 2hDo = E-E-1, hD+ = E-I and hD_ = I-E-1, is accurate of order 2 
and dissipative of order 4 if = 1. 

Hence, q = 1/2 in T+,ign(p) and q = 2/3 in T7Uign(p). If a $4 1, p = 1 and 2s = 2, 
i.e., q = 1/2 on both sides of the characteristic. But the estimates (2.8) show that 
the local error outside an interval of length 0(hqllog hj) is only O(h2) for a = 1. 

Therefore the solution to the Lax-Wendroff scheme with a = 1, behaves fairly well 
even for discontinuous initial functions. 

3. Proofs of Algebraic Theorems. We are going to prove Theorems 2.1-2.3 and 
begin by rewriting (2.5) in the form 

** h(x, t) E coO if h has partial derivatives of all order and h_ 0 outside a bounded region in 
the (x, t)-plane. 
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Q(x, t, (, 0) = eiP(x t) +U(x, t,) 

where 

00 

U (x,t, )= c(x, t)(P^l 
V=o 

which is analytic in t. In this section Q stands for either Q-1 or Qo. 
Proof of Theorem 2.1. Since (2.3) or (2.3') is dissipative of some order 2s, we have 

(3.1) eRe(U(xUtO) = Q1(x, t, 2, o)| < 1 - i ais , a > 0 

and thus 2s > p + 1. Write G(it) = Q(x, t, 0, 0), then 

1 = 1 G (it)/G (-i) e = p+l+. 

i.e., Im (co(x, t)) = 0 for odd p. 
Moreover co(x, t) < 0, since we otherwise could find a (, such that Q > 1. But p 

is the order of accuracy and hence co(x, t) $ 0 and cO(x, t) < 0. Thus we finally con- 
clude that 2s = p + 1. 

Proof of Theorem 2.2. We first start with constant coefficients p and 4), where 
p - O. 

We are going to estimate U(t + ia) = 2=o c,(t + ia)P+"+l and therefore we 
state the following variant of H6lder's inequality. 

Hdlder's inequality. Let A > 0 B > 0 and e > 0 be given. Then 

AB _77Ar + -B 22 
where r = q/(q - 1), q > 1 and q = 77(e) is uniformly bounded for e >_ Eo > 0. 

From (3.1) and assumption (ii) it follows that 

1Q(t + ia, 0)l = exp (-apX - a2s + H(a, (, p)), 

where 6' > 0. 
Here 

Hf(a, (, p) = Re ia U1 + 2 ! U") + 

(3.2) = Re co (di (ia) p + d2(iaA`)12 + * + dp (ia)) + (iaY)p+ 

+ ?( 2 jal 
i 

)} 
j+k= p+2 

where 

dk Pk k = 
122k=12,.. .,p 

Now we have from Holder's inequality the estimates 

ja^j+lItlP-j < |7ia 'Tr j + ,E2s 

where for r > 1, Tr,j = 2s(j + 1)/(r + j), (r = 2s - p), j = 0,1, ** , (p - 1). 
Thus, we can find a Tr > 1 such that 
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H(a, i, p) < vilalrr(l + o(1)) + V2a28(l + O(a) + 0(t)) 

when a, 0 and where V2 = O(e), e -- 0. 

It is easy to see that we have to take Tr =mini Trr, over the terms in (3.2) which 
are positive. Thus for odd p we conclude that 

Tr( ) = Trj = T1,1 

since r = 1. (Theorem 2.1.) From this it follows that r = (p + 1, p + 1) for odd p. 
When p = 21, 1 = 1, 2, * - *, we find that 

(3.3) Tr(O) = Tr, 0 

when sign (ico) sign (a) = 1, and 

(3.3') T-r(2) = Tr,2 

when sign (ico) sign (a) = -1. 
Note that Im (ico) = 0. Summarizing, we have 

(3.4 0)ia, ?)| = exp (-apX - (' - 2 + vila lt(m) + . 

m = 01, 2. 

Moreover, from assumption (iv) we know that 

(3.5) sign (ico) = sign p, 

and together with (3.3) this gives that (3.3) holds when 

sign (a) = sign (p), i.e. ap > 0. 

Analogously, (3.3') holds for ap < 0, i.e., for even p, r is given by 

. = (*r~(2) (rr?)) = (6s/(r + 2), 2s/r) . 
Now it is easy to see that we can choose e so small that (3.4) guarantees con- 

tractivity of order r. Indeed, there exists a to, such that for all t, I < to, 

(3.6) IQj( + ia, 0)j = exp (-apX + al1Tr())R() m = 0, 1, 2, 

where IR( )I I 1 for kI < to. But for 1 
- to there exists an ao > 0 such that for 

all jai < ao 

IQQ + ia, ?)| -' exp (-apX + alal rr^ 6'/2 t2s m 0, 1,2 

Thus, Theorem 2.2 is proved for constant coefficients. 
From the assumptions of Theorem 2.2 we have local contractivity of order X for 

every x and t, i.e., 

Q(x, t, t + ia, 0) = exp (-aXp(x, t) + or(x, t)lalIT) X R(x, t, W), 1 _ 7r. 

What remains to show is that o(x, t) is uniformly bounded. From Definition 2.2, 
we see that 

Q(x, t, I, 0) = exp (ip(x, t)Xt + CO(X, t){P+' + . 

This relation and assumptions (ii) and (iii) of Theorem 2.2 then show that 
CO(x, t) is uniformly bounded in the upper halfplane. Now V2 = V2(E) in (3.4) depends 
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essentially on co(x, t) and thus V2 = Ev3(X, t), where V3(X, t) is uniformly bounded for 
t _ 0. 

Therefore it is sufficient to choose E(x, t) > co > 0 to obtain the relation (3.6) 
and from H6lder's inequality, we then see that vi(x, t, e) is uniformly bounded. 
Hence we can conclude that o-(x t) is uniformly bounded for t > 0 and the proof of 
Theorem 2.2 is completed. 

Finally we give the proof of Theorem 2.3. (Cf. Strang [10] and [1].) 
Proof of Theorem 2.3. Put eiP(x t)Xe =Q2(x, t, i, 0) + R(t), and take y = pX; then 

Q2(t, y) is the Lagrangian interpolation polynomial of degree 2N through the points 
(v, em) })v=-N, and hence the remainder R(t, y) is given by 

N 

R(, y) = 1P+?iPe't"y [II (y2 - j2)/(2N + 1)!, I I- < N 
j=1 

Thus 

N 

coax, t) = -ip(x, t)X Jl (2 - p2X2)/(2N + 1)! 
j=1 

and since lp(x, t)Xj ? 1 we see that condition (iv) of Theorem 2.2 holds. 

4. Proofs of Analytic Theorems. Proof of Theorem 2.4 (constant coefficients). The 
generalized solution of (2.1) with 0 = 0 and with initial function f(x) defined in 
(2.6) is 

(4.1) u(xt)= f(x+ pt)=O0 x+pt<0, 
=1 x + pt O. 

Now make the transformation 

W (t) = ea(x,+P t)/hV (t) 

If v,(t) satisfies (2.3) then w,(t) satisfies 

(4.2) Qi'w (t + k) = Q2'w,(t) 

where 

Q1 'wP = e-aP)eavQie avWv 

and 

Q2Iw, = e avQ2e va , 

Since 1Q-(%, 0)1 ? cost > 0 it follows that for a sufficiently small 

IQ1'(Q, 0)I = e-aPXlj(, + ia, 0)! _ const > 0. 

Thus 

Q'L(Q + ia, 0) = e-P Qi(t + ija, 0)1Q2(Q + ia, 0) 
is well defined. 

From assumption (ii) it now follows that 

Q1Q + ioa, 0) = exp (alaI T) X R(a) 
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where IR( ) I < 1 for 1 _< r. Then it is an easy matter to see that 

(4.3) IQ'1( + ia, h) 1 + voh forO < h h< h, 

where Po is independent of h, if a is chosen such that 

ar = o = sign (pt + x,)hl/T:. 

It is well known (cf. Richtmyer [12]) that (4.3) implies stability of the scheme (4.2), 
i.e., 

IIw,(t)llh < eOt Iw'(O)1llh= etlie a (+p O 
Af(X,)IIh 

for some constant A. 
If a < 0, then 

X 1/2 
11 w (O)I11 h ? max f (xv )E he2avJ = hl/2/(1 1-2a)1/2 

(4.4) 
Y P=o 

- O (hl/2I1/2) 

Since IIw,(t) I1h > h"2Iw (t) 1, we get 

Iv, (t) I < P1eth(q-1)/2 exp (-h-flx + ptf) 

where q = = (T - 1)/T1F, and vi is a constant. 
Note that this estimate only holds to the left of the characteristic pt + x = 0. 
Let 

f1(x)= f(-x)= 1, x<o 

= 0 X > 0. 

With fi(x) as initial function we get a corresponding estimate to the right of the 
characteristic pt + x = 0, when a > 0. 

Nowf2(x) = fl(x) + fo(x) CO1,- < x < or, (fo = f) as initial function gives 
rise to solutions of (2.1) and (2.3) that are identically equal to one. This follows from 
assumption (i). An elementary application of the triangle inequality then gives 

iv,(t) -11 i< P2eth(7-l)/2 exp (-h-qlx, + ptl) 
where P2 is a constant. 

This estimate is used to the right of the characteristic pt + x = 0. Thus the 
proof of Theorem 2.4 is completed. 

Before we are able to prove Theorem 2.5 we are going to state the following 
stability theorem due to Lax-Nirenberg [7]. 

THEOREM 4.1. Consider the difference scheme 

y,(t + k) = Sy,(t), 

where S is a difference operator of the form 

S S thadj(xt, t, O)E j . 

Suppose that for S we have 
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S(x, t,y , O)j I 1 

for all t, x and t. 
Furthermore assume that condition (iv) of Theorem 2.5 holds. Then the difference 

scheme is stable in the sense that 

I I Y(t) I Ih < ed Ily.(?) ||h, 
where , is a constant. 

Proof of Theorem 2.5 (variable coefficients). In this case we have the scheme (2.3') 
and we make the transformation 

w, (t) = eag( hV, 

O)/h(t) where g(x, t) was defined in Section 2. 
The new mesh-function w,(t) satisfies 

(4.5) w,(t + k) = Qo'w,(t) = eaQ(x t+k)/hQ e-a(z,,t)/h (t) 

From Definition 2.5 it follows that Og/Ot = pag/Ox, and moreover, since p(x, t) E c0, 
that a2g/at2 and a2g/ax2 is uniformly bounded for t > 0. 

Thus it is easy to conclude that 

QO' (x, t, 
t 

a, h) = 
eaQP(xt)ox(xt)Qo(x ty + iag,(xy t), h) 
+JalhQ (x, t, t), (i= x, 

where Q is the symbol of a uniformly bounded operator Q. 
Using assumption (ii) we have for a sufficiently small 

QO'(x, t, i, a, 0) = exp (or(x, t)Iagx(x, t)lT:) X R(x, t, i, a) 

where JR1 < 1 for 1tl < T. 

Now 

R(x, t, i, a) = R(x, t, j, 0) + IaIFQ!3(x, t, y) 

and hence, since R(x, t, 0, 0) = Qo(x, t, y, 0), 

Qo'(x, t, i, a, h) = Qo(x, t, i, 0) + (IaI' + Ialh + h)Q4(x, t, i, h) 
Here, Qj, j = 3, 4 correspond to uniformly bounded operators Qj, j = 3, 4. 
'Now the difference scheme y,(t + k) = Qoy,(t) satisfies the conditions of Theo- 

rem 4. 1, and therefore it is stable. If we choose 

a = sign (g(x, t))hl"r: 

then the scheme (4.5) is also stable, since Qo' = Qo + hQ5, where Q5 is a uniformly 
bounded operator. Summarizing, we can find a constant /31 such that 

Ilwp(t)I1h < eftl |W,(O)ffh = eltlie a(. O)/hf(. )11h 

But now g(x, 0) = x, and therefore estimates corresponding to (4.4) hold even 
in the variable coefficient case. Since u(x, t) = 0 for g(x, t) < 0, the estimate (2.8) 
in T-1 follows. Now call the solutions of (2.1) and (2.3') with initial functionf2(x) 
- 1 u(2)(x, t) and v,(2)(t) respectively. Then from assumption (i) we have 
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I u(1)(x,, k) -V(2)(k) = lu(2)(x, k) - Qou(2)(x^, 0)1 = (hP+l) 

A standard calculation then shows that 

IU(2) (X, t) - Vv(2)(t)I = O(hl ) 

and hence the estimate (2.8) in T+i follows as in the proof of Theorem 2.4. 

5. Numerical Experiments. In this section our theoretical results of Sections 
2-4 will be tested by a series of numerical experiments performed on the CDC 3600 
computer at the University of Uppsala. 

In the main theorem of Section 2, we have estimates of the form 

(5.1) lu(x,, t) - v,(t)l _ c(t) exp (-h-qlpt + xvl) . 

We are now going to study the interval If(t) outside which this error is smaller 
than (, E > 0. Therefore, we let our computer program count the number of points 
in this interval. We call the number to the left of the characteristic line, pt + x = O0 

Dh-1 and the number to the right Dh+1, and the total number of points within If(t), 
Dh = Dh1 + Dh+1. The width of If(t) = m(I,(t)), is therefore approximately h Dh. 

We can also find m(I,(t)) by solving 

(5.2) c(t) exp (-h-qlpt + xl) = e. 

This last equation has two roots xi, X2, x1 < X2, and hence m(I,(t)) = X2 - x. 
If we also introduce the double step-size 2h and count D-1, D+1 and D2h respec- 

tively, we can define the following quantities 

Eh ' = Dht/D~h . = -/2, i = -1, +1 

Eh = Dh/D2h -'. 2, T = TT defined in Section 2. 

Therefore we could use these quantities to control our theoretical value of TT. 

In the table on the following pages we describe 11 numerical experiments. In 
column 8 we have the number of iterations, called n, which we can relate to h and k 
in the following way. Set nk = 1 and h = k/X. We have thus normalized our results 
to the time t = 1. = 0 in all of the experiments. Observe that for odd p, we have 

= T+, and therefore we are only considering Eh for these experiments. 
We are now going to comment on the results of the experiments. A general 

remark must be that Ehi, i = -1, +1 and Eh are rational step functions of h, and 
when Dhi, i = -1, + 1, and Dh respectively are rather small natural numbers, the 
risk of obtaining crude estimates of TT increases seriously. 

In Experiment 5 we have the Lax-Wendroff scheme -mentioned in Section 2, and 
hence T = (3, 2). 

The difference operator in Experiment 7 is the most accurate one, when N = 2 
in Theorem 2.3. Hence T = (4.5, 3). The more precise results of Hedstr6m [3] gives 
for- this- special- case T = (5, 3-)-, whicl agrees better wit the- experiment. 

The Crank-Nicolson scheme of Experiment 9 was introduced to see that some 
sort of dissipation is necessary to get a meaningful result. (Cf. Section 1.) 

The results of Experiment 10 verify the theory closely, and finally in the last 
experiment we see the effect of increasing r from 2 to 4, i.e., to 2s = 6. 
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