
On the Resolvent of a Linear Operator 
Associated with a Well-Posed Cauchy Problem 

By John Miller 

Summary. We show how local estimates may be obtained for holomorphic 
functions of a class of linear operators on a finite-dimensional linear vector space. 
This is accomplished by classifying the spectrum of each operator and then esti- 
mating its resolvent on certain contours in the left half-plane. We apply these 
methods to prove some known theorems, and in addition we obtain new estimates 
for the inverse of these operators. Analogous results for power-bounded operators 
are given in [3]. 

1. Introduction. Let V.m be m-dimensional unitary space and 3 the family of all 
endomorphisms of Vtm. Let (u, v) denote the scalar product of elements of cum, then 
on SUm the vector norm is defined by IvI = (v, v)"'2 and the operator norm by I TI 
= sup I=1 I TvI . We are interested in the subset 3(C) of operators in 3 which satisfy, 
for each v G VUm and some constant C(v) depending only on v, the local resolvent 
condition 

(1. ) I(zI - T)-v ? < C(v)/Rez 

for all complex numbers z in the open right half-plane. For example, the global 
resolvent condition 

(1.2) (zI - T)-' I ? C/Re z 

for all complex numbers z in the open right half-plane implies (1.1) at each point 
vecUmwithC(v) = C .vj. 

Remark 1.1. 3(C) contains operators of practical importance because if u(x, t) is 
a solution of the well-posed Cauchy problem 

u(x, t) = Tu (x, t), u(x, 0) = f(x),, Iu(x t)I < C~f(c) 
at 

- < X < , t > 0 
where T is a matrix of complex numbers, then ?u(x, t) = eTtu(x', 0) where for some 
constant C 

(1.3) IeTtI < C 

for all t > 0. It is a standard result, easily seen by taking the Laplace transform of 
eTt, that (1.3) implies condition (1.2). 

For each T E 3(C) we consider the family of functions 5(T) which are holo- 
morphic in a sufficiently large open neighbourhood of a(T), the spectrum of T. 

Remark 1.2. It is easy to check that condition (1.1) implies that, for each T' 
E 3(C), a(T) is contained in the closed left half-plane, and that points of ao(T) (i.e., 
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those points of o-(T) on the imaginary axis) are simple poles of the resolvent function 
(zI -T)-1. 

In what follows for each T E 3(C) we classify the points of o-(T) not in ro(T), 
and then for each class we construct simple closed rectifiable Jordan curves which 
decompose the points of the class into disjoint subsets. 

Remark 1.3. It will be seen later that 5Y(T) can be defined to be those functions 
which are holomorphic on any open neighbourhood of o-o(T) and the compact sets 
bounded by the curves associated with the above subsets of eigenvalues. In particu- 
lar any function holomorphic in an open neighbourhood of the closed left half-plane 
is in 5(T) for every T CE 3(C). 

2. Classification of the Spectrum. For each T EC 3 we now classify the points of 
or(T) not in o-o(T) in terms of their distance from the imaginary axis. We start by 
drawing a line parallel to the imaginary axis through each of these points. These 
lines together with the imaginary axis form a set ? of lines lying in the closed left 
half-plane. Each pair of adjacent lines in ? bounds a doubly infinite open strip con- 
taining no elements of o-(T). The set of these open strips with the order relation 
"the strip s' follows the strip s if s' is to the left of s" forms a sequence S. We are 
interested in the subsequence 8i of 8 constructed as follows. Its first strip is the 
same as that of 8, namely the strip bounded by the imaginary axis and the first 
element of ? to the left of it. Let Wa(T) and da(T) denote respectively the width of 
the ath strip of 81 and the distance of its left boundary from the imaginary axis. 
Then the ath strip (a > 1) of 81 is defined to be the first strip of 8 following the 
(a - 1)th of 81 whose width is greater than dal(T). We have therefore 

(2.1) wi(T) = 61(T) 

and 

(2.2) Wa(T) > Sa-I(T) 

for a > 1. 
We now prove that 

(2.3) Sa(T) > Wa(T) > aa(T)/n 

for a > 1. The left inequality is immediate from the definitions. The right follows 
by observing that Ma(T) is the sum of Wa(T), and the distance between the right 
boundary of the ath strip of 81 and the left boundary of the (a - 1)th strip of 81, 
and bai(T). From the construction of the ath strip, and the fact that there are at 
most m strips in 8, it follows that the middle quantity is at most (m - 2)8al(T). 
Using (2.2) we now see that Sa(T) < mwa(T) as required. 

For a ? 1 we define the ath class (a(T) to be those points in or(T) lying between 
the ath and (a + 1)th strips of 81. 

Remark 2.1. The points in (7a(T) nearest to the imaginary axis are a distance 
Sa(T) from it, and no point in (a(T) is farther than mba(T) from it. Inequalities 
(2.2) and (2.3) imply that the distance of (7a(T) from any other class is greater than 
Sa(T)/m. 

3. The Spectral Decomposition. We now decompose the spectrum o-(T), for 
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each operator T E 3(C), into disjoint spectral sets. Each distinct eigenvalue in 
ao(T) forms a distinct spectral set. For each such spectral set we draw a circle with 
its element as centre and arbitrarily small radius, certainly less than half the 
distance between its centre and the rest of the spectrum. We orientate each such 
circle in the usual way, so that its centre is to the left of the circle. 

To construct the spectral sets within the general class aa(T) we proceed as 
follows. About each point in the class we draw a circle with the point as centre and 
radius ra(T), where 

(3.1) ra(T) = rba(T)/2m 

and r is any fixed number in the interval (0, 1]. (3.1) and Remark 2.1 ensure that 
circles of different classes do not intersect. If two circles about points in 0a(T) inter- 
sect, we combine them into a single contour by deleting any part of a circle lying 
in the interior of another. Proceeding in this manner we obtain a finite number of 
disjoint closed rectifiable Jordan curves, which we orientate in the usual manner. 
Taken together these surround all the points of a,(T), and the eigenvalues enclosed 
by any one of these are taken to be a spectral set of this class. 

Taking the spectral sets in ao(T) and those to the left of the imaginary axis, we 
obtain a decomposition of a(T) into a finite number of disjoint components, of 
which the associated contours form an orientated envelope of a(T) denoted by 
'y(r, T). 

Remark 3.1. The length of any component of y(r, T) in va(T) is at most 
27rmr,(T). The distance between any two points in its associated spectral set is not 
more than 2(m - 1)ra(T). Remark 2.1 and (3.1) imply that the distance of any 
point on such a component from o(T) is at least ra(T). 

In what follows we denote by Cl(T) an arbitrary spectral set in the above de- 
composition of a(T), and we let y1(r, T) denote the associated component of y(r, T). 
It is clear that a(T) = Uaoa(T) = UL9 C(T) and y(r, T) = UL 1yz(r, T). Correspond- 
ing to each Cl(T) we define the operator 

(3.2) E1(T) = il (zI - T1 dz 2r irT) 

then it is well known that 

(3.3) Ek(T)EL (T) = 8kzEl (T), Z El(T) = I, El(T)T = TE1(T) 

Also for any v C m, T C 3(C) and f C 3Y(T) we have 

(3.4) f(T)v = 1 
f(z) (zI -T)- v dz 2 rt (r, T) 

and 

(3.5) Ei(T)f(T)v = (z) (zI - T)-v dz . 
27t Sy~,T) 

From Remark 1.2 it follows that if Cl(T) = { K(T) }, where KL(T) C ao(T), we obtain 
in this case an alternate expression to (3.5), namely 

(3.6) Ei(T)f(T)v= f(KI(T)) lim (z - KL(T))(zI - T)-"v. 
z- he d (T) 
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Using (3.6) for the spectral sets in uo(T) and (3.5) for the others we now see the 
truth of Remark 1.3. 

In the applications presented below the functions defined in Remark 1.3 are 
sufficient. However it may arise in other situations that the functions have singulari- 
ties closer to the spectrum of one or more of the operators in 3. In such a case it is 
necessary to construct a smaller orientated envelope than the one given above. This 
is done in detail in [31 for a particular case, and analogous methods are applicable 
here, although we do not pause to develop them. 

4. Estimation of the Resolvent. The resolvent of any operator T E 3(C) satisfies 
(1.1) in the open right half-plane. This operator-valued function of z is holomorphic 
in the resolvent set and it is important to have an estimate of it throughout this set. 
To obtain such an estimate we consider the polynomial in z of degree at most m - 

given by 

(4.1) P(z; T) = (zI -T)-1 J (Z - Kj(T)) 
j=1 

where a(T) = {K1(T), * , Km(T)}. If Z is any point in the complex plane we can 
represent P(z; T) by a Cauchy-Taylor series about Z. Thus 

(4.2) P(z; T) = E (Z _ Z)k 1 P(s; T) ds 
k-0 2ri (s - z)k+ld 

where r is any closed contour surrounding Z. Combining (4.1) and (4.2) we see that 
for any point z in the resolvent set of T we can write 

(4.3) (zI - T)-1 21 4( (s, z; T) (s - T)-lds 

where 

(4.4) So(s, z; T) - Ki())E(z-Z) 

From (1.1) and (4.3) we see that for any v C Vat T C 3(C) and z in the resolvent 
set of T 

(4.5) I(zI -T)-lvI < C(v) sup p(8' Z; T) (s E r) 
28 Re s ' (s ) 

where I r I denotes the length of r. 
In particular, to estimate the resolvent on the component 'y (r, T) associated 

with a typical spectral set Cl(T) in va(T) we choose Z = Z1(T) to be the point with 
real part 26a(T) and imaginary part equal to the imaginary part of KL(T), where 
KL(T) is a point in Cl(T) nearest to the imaginary axis. The corresponding contour 
r = rF (T) is taken to be the circle with centre Z1(T) and radius 6Oa(T). Then it is 
clear that I rI(T)I = 27rb.a(T) and IRe sj > Oa(T) (s E 17(T)), so that (4.5) implies 
for any z E yI(r, T) and v E V. 

(4.6) I(z -T)-lvI < C0(v) sup p(s, z; T)j, (s E ri(T)) 
8 
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Also for s E rI(T), Kj E a(T) and z E yI(r, T) we have 

(4.7) Is - Za(T)J = 6a(T) 

and from Remarks 2.1 and 3.1 it is easy to verify that Iz - Kj(T)I > rO,(T), 
Iz - Zz(T)I < (m + 2)6a(T) + ra(T), Iz - sI ? (m + 3)5a(T) + ra?(T). Thus, 
from (3.1) and the fact that 

S-Kj(T) z -s 
Z - Kj(T) z - Kj(T) 

we obtain for any s E r1I(T), Kj E ac(T) and z E y I(r, T) 

(4.8) sz-Zi(T) < m + 3, - Kj(T) < 2m(m + 4) 
(4.8) 5s- Z1(T) < +~ Z - Kj(T) r 

Combining (4.4), (4.7) and (4.8) we see that for any s E rI(T) and z y I (r, T) 

(4.9) lp(s, z; T) I r- r(T) 

where 

(4.10) k(m) = m(m + 4)m(2m(m + 3))m-1 < e7m2 

Therefore from (4.6) and (4.9) we have for any v C VCm and z E y1(r, T) 

(4.11) l(zI - T)-v1 _ k(m)C(v) (441) (zI - T)-'v I 
5rM 1rc,(T) 

Recalling Remark 3.1 and putting dist (z, u(T)) = minj Iz - Kj(T)1, the estimate 
(4.11) establishes the following. 

THEOREM 4.1. For any T E 3(C) there exists an orientated envelope 'y(r, T) of vr(T) 
such that for any v E C.m and z E 'y(r, T) 

| (zI -T)- Tv_ < k(m)C(v) 
rml dist (z, ao(T)) 

where k(m) < e7m2 and r is any number in the interval (0, 1]. 
Using the maximum modulus principle and choosing r sufficiently small it is 

clear that Theorem 4.1 provides a local estimate of the resolvent function at any 
point in the resolvent set. 

5. The Basic Lemmas. We now state and prove two basic lemmas, which follow 
easily from the results of the previous section. 

LEMMA 5.1. If v E Vm, T E 3(C) and El(T) is the projection associated with a 
spectral set {KI(T)} in uo(T), then for any f C 5;(T) we have 

IEz(T)f(T)vl < If(KL(T))1C(v) 

Proof. Put z(E) = KL(T) + E, E > 0, in expression (3.6) and observe that 
z(E) - Kz(T) = e and Re z(E) = E. Then using (1.1) it follows that 

I(Z(f) - Kx(T)) (z(e)I - T)-'vl ? C(v) 
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for each e > 0, and therefore IE1(T)f(T)vl ? If(KI(T))IC(v). Q.E.D. 
LEMMA 5.2. If V ? U., T E 3(C) and El(T) is the projection associated with a 

spectral set Cl(T) in oa(T) (a > 1), then for any f ? i(T) we have 

IEz(T)f(T)vI < k (m)C(v) sup If(z) , (z ? y (r, T)) 
rM- 

where k1(m) < e8m2 and r is any number in the interval (0, 1]. 
Proof. From Eq. (3.5) we have 

IEI(T)f(T)vl < 
y 

(2r, T) Isup If(z)(zI - T)'-v, (z ? y (r, T)) 

which together with (4.11) and Remark 3.1, implies the lemma with ki(m) = 
mk(m). Q.E.D. 

Combining Lemmas 5.1 and 5.2 and observing that f(T) = ZI E1(T)f(T) we 
obtain the following theorem, which gives a local estimate for a function of an 
operator. For convenience we let y'(r, T) denote those components of y(r, T) associ- 
ated with spectral sets not in oo(T). 

THEOREM 5.3. If V E 1)m and T ? 3(C) then for any f ? i3(T) we have 

If(T)vl < K(m)C(v) sup f(z)l , (z ? oo(T) U y'(r, T)) 
r z 

where K(m) < e9m2 and r is any number in the interval (0, 1]. 

6. Applications. In this section we derive several results which are a consequence 
of Lemmas 5.1 and 5.2. The first of these is a theorem which includes the exponential 
analogue of a result proved by Morton in [4]. Its novelty, however is that it also 
provides an estimate not only for positive values but also for negative values of the 
exponential variable t. For convenience we put r(T) = maxj Re Kj(T) and ,(T) = 

minj Re Kj(T). 
THEOREM 6.1. If v ? 1Cm then for any T ? 3(C) we have 

jeTty! _ exp [(1 - r/2m)r(T)t]K(m)C(v) 
r 

for all t > 0, and 

jeTty! < exp [(1 + r/2m)M(T)t]K(m)C(v) 
r 

for all t < 0, where K(m) < e9,n2 and r is any number in the interval (0, 1]. 
Proof. To prove this we observe that for each fixed t the function f t(z) = ezt is 

entire and hence it is in a (T) for each T E 3(C). We construct -y(r, T) for each T 
? 3(C). Clearly if z ? oo(T) then Ieztj = 1, and if z E y'(r, T) we have (1 + r/2m) li(T) 
< Re z < (1 - r/2m)r(T). Therefore for z ? oo(T)Uy'(r, T) 

(6.1) jeztj < exp [(1 - r/2m) r(T)t] 

for t > 0, and 
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(6.2) lez t?< exp [(1 + r/2m)Mu(T)t] 

for t < 0. Using (6.1) and (6.2) in Theorem 5.3 we obtain the first and second parts 
respectively of the theorem. Q.E.D. 

Our second application is to the proof of a sharp form of a theorem of Kreiss 
[1]. This sharp form was first given in [2] by an indirect method. 

THEOREM 6.2. If v EE Em, then for each T & 3(C) there exists a positive-definite 
Hermitean operator H(T) such that H(T)T + T*H(T) ? 2(1 - r)r(T)H(T) with 
H(T) _ I and (v, H(T)v)1'2 < r-m+lK(m)C(v), where K(m) < e9M2 and r is any 
number in the interval (0, 1]. 

Proof. For each T C 3(C) we construct the orientated envelope y(r, T). With 
El(T) defined by (3.2), we put T, = E1(T)T and we construct below an H1(T) for 
each spectral set Cl(T). H(T) is then defined as 

(6.3) H(T) = m, ZHI(T) 

If {Kz(T)} is a spectral set in uo(T) we put H1(T) = El*(T)EI(T). But T= 
Kl(T)El(T) and therefore 

(6.4) H1(T)Ti + T1*H1(T) = 2 Re KZ(T)EZ*(T)El(T) = 0. 

Also, by Lemma 5.1 we have IEi(T)vl ? C(v) so that 

(6.5) (v, Hz(T)v)12 ? C(v). 

On the other hand if C1(T) is a spectral set in oa(T) (a ? 1) and Ki(T) is a point 
in C0(T) nearest to the imaginary axis, Remark 3.1 implies that Iz - KL(T)I _ 
(2m - 1)ra(T) for any z &E y(r, T). 

Therefore if gin(Z) = ((Z - Ki(T))/rba(T))n and 

g Z (T) = 2.i 1(rT) g/n(z)(zI - T)-1dz 

we have jgqn(z)j < (1 - 1/2m)n for all z E y I(r, T), and Lemma 5.2 implies that 

Igjf(T)vj < -1 - I ) k(m)C(v) 

where k1(m) < el2. 
We put Hi(T) = o (gn(T))*gln(T) and therefore 

1/2 (4m~1/2ki(rn)C(v) (6.6) (v, Hi(T)v) =-(3 ) ; 1 

Now T1 = Ki(T)EI(T) + rba(T)gi(T) so that H1(T)TI + T1*H1(T) - 

2r Re Ki(T)Hi(T) + rb,(T)Gi(T) where G1(T) = Hi(T)gq(T) + gl*(T)Hi(T). But 
for all nonnegative integers n 

(6.7) (9fn+1(T))*gln(T) + (glq(T))*gl7+'(T) 
< (qf+l(T))*gln+'(T) + (gln(T))*g1 (T) 

Summing (6.7) from n = 0 to oo we see that Gi(T) ? 2Hi(T) and therefore 

(6.8) HI(T)TI + T1*H1(T) ? 2-r(T)(1 - r)H1(T) . 
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- The expressions (6.4) and (6.8) taken together verify the first property required 
of H(T). The last property follows from (6.3), (6.5) and (6.6). It remains to show 
that H(T) ' I, but (v, v) = I z Ez(T)v12 < m El JEz(T)v12 < (v, H(T)v). Q.E.D. 

It would be interesting to know if, for certain classes of linear operators on 
Hilbert space satisfying (1.1), it is possible to construct orientated envelopes of 
their spectra on which Lemmas 5.1 and 5.2 hold. The best estimate for K(m) in 
Theorem 5.3 is also unknown. 
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