On a Generalization of the Midpoint Rule*

By Franz Stetter

I. Introduction. A modified midpoint rule for the approximate calculation of
weighted integrals [? p(x)f(x)dx, where p(z) = O is the weight function, has been
recently proposed by Jagermann [1]. Although this formula reduces to the common
midpoint rule in the particular case p(z) = 1, in the general case of arbitrary weight
functions the error does not vanish for all polynomials @ + Bz. The purpose of this
paper is to generalize the midpoint rule such that the formula is exact for poly-
nomials of first degree and arbitrary weight function p(z) = 0.

In view of practical calculations, the repeated midpoint rule is very useful
because of its simplicity and small round-off error. Moreover, an error estimation
does not require higher derivatives whose bounds are often not easy to obtain. For
a comparison of the repeated midpoint rule to both Gaussian quadratures and ‘‘best”’
quadratures we refer to Stroud and Secrest [2].

II. Generalized Midpoint Rule. We assume that the weight function p(z) does
not identically vanish on any subinterval of [a, b]. Let

1) y=H(x)=/:P(t)dt, H®) =1,

and let the inverse function of H (which exists because H(r) is monotonic increas-
ing) be denoted by L:

@) z=Ly) =H ).
Fort=0,1,---,N — 1, (N = 1) we put
(i+D/N zit1
3) a;i=N fm L(y)dy = N /;i tp(t)dt,
where z; = L(¢/N). We now define the generalized rule by:
b 1 N-1
@ [ v@s@iz = & X sa) + k.

Assuming f € C%a, b] the error Ry can be expressed by

b N-—-1
(5) Ry = %(/ 2'p(x)dz — —;,— Z_:o af)f”(é) = %CNf”(E) , a<§<b.

Proof. Dividing [a, b] into the subintervals [z;, z:;1] we obtain for the error Rx
N—1

Bv=2 {f @@ - 5 f(a,-)}.
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By the Taylor series

f@) = f(a)) + (@ — @) (@) + 3@ — )’/ (&)
and by (3) we get the expression
R = LS G - aprreaas)

=0 z;

(6)

%(NZ_:I / - (@ — a;)zp(w)d$>f"(5) .

=0 " z4

Furthermore, it follows from (3) that

N-—1 Z 41 . N-1 i1 . 2 . 1 .

> / (x — a:)p(x)dx = Z / rpl)dr — ai + 5 a:

(7) =0 Y z; =0 z; N N
/‘b . 1 N-—1 .

=, zp(x)de — N &

(6) and (7) yield the bound (5).

Cy can also be interpreted as the integration error of the function f = 2 It may
be noted that Jagermann’s modification of the midpoint rule is obtained if the
integral N [(t0/¥ L(y)dy in (3) is approximated by the (ordinary) midpoint rule,
i.e., by L((2¢ + 1)/2N).

III. Examples.
(a) Forp(z) = 1anda = 0,b = 1, we obtain a; = (2¢ + 1)/2N and, from (5),
Cy = 1/12N? in accordance with the common midpoint rule.

(b) Let p(z) = #* (1 — a?)*2anda = —1,b = 1. From L(y) = —cosmy it
immediately follows that:
I\ T AU (e ol =0 - N —

a; = - singrreos o (z =0, , N —1)

and
1 1=, 1 _
CN—2—N;a;—2 forN =1
2
=%—%—sin2$ forN = 2.

Obviously, Cx = O(N—2).
(¢) For the infinite interval a = 0, b = « and the weight function p(z) = ¢*
we get from L(y) = —log (1 — ¥):

aN_1=1+10gN,
ai=1+1logN—-—N—-i—1)log(N—7—1) — (N — 1) log (N —2)

fori = 0,1, ---, N — 2. Numerically computed values of Cx
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N,1’2|5'10|20l50

cy | 1000 | 0520 | 0213 l 0108 | 005 | 002

show that Cx goes to 0 with the order O(N ).
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